Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(39): 17889-17896, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36126329

RESUMEN

High-resolution structures are crucial for understanding the functional properties of nanomaterials. We applied single-particle cryo-electron microscopy (cryo-EM), a method traditionally used for structure determination of biological macromolecules, to obtain high-resolution structures of synthetic non-biological filaments formed by photopolymerization of macrocyclic diacetylene (MDA) amphiphilic monomers. Tomographic analysis showed that the MDA monomers self-assemble into hollow nanotubes upon dispersion in water. Single-particle analysis revealed tubes consisting of six pairs of covalently bonded filaments held together by hydrophobic interactions, where each filament is composed of macrocyclic rings stacked in parallel "chair" conformations. The hollow MDA nanotube structures we found may account for the efficient scavenging of amphiphilic pollutants in water and subsequent photodegradation of the guest species.


Asunto(s)
Contaminantes Ambientales , Nanotubos , Microscopía por Crioelectrón/métodos , Polímero Poliacetilénico , Agua
2.
Angew Chem Int Ed Engl ; 61(43): e202211465, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36045485

RESUMEN

Creation of new two-dimensional (2D) architectures has attracted significant attention in the field of self-assembly for structural diversity and new functionalization. Although numerous 2D polymer nanosheets have been reported, 2D nanosheets with tubular channels have been unexplored. Herein, we describe a new strategy for the fabrication of stimulus-responsive conjugated polymer 2D nanosheets with hollow cavities. Amphiphilic macrocyclic diacetylenes self-assembled in an aqueous solution in a columnar manner to afford bilayered 2D nanosheets with intrinsically tubular nanochannels. UV-induced polymerization resulted in the generation of blue-colored tubular conjugated polydiacetylene 2D nanosheets. Immobilization of gold nanoparticles, fluorescence labeling with FRET phenomenon and colorimetric DNA sensing were demonstrated with these new 2D nanosheets. In addition, the free NH2 containing polymerized 2D nanosheet was utilized for conductivity behavior and grafting on graphene oxide (GO).


Asunto(s)
Nanopartículas del Metal , Polímeros de Estímulo Receptivo , Oro , Polímeros/química , Colorimetría
3.
Small Methods ; 8(8): e2301286, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38323693

RESUMEN

Functional supramolecular materials exhibit important features including structural versatility and versatile applications. Here, this study reports the construction of unique hierarchically organized nanotoroids exhibiting fluorescence, photocatalytic, and sensing properties. The nanotoroids comprise of macrocyclic diacetylenes (MCDA) and 8-anilino-1-naphthalene sulfonate (ANS), a negatively charged aromatic fluorescent dye. This study shows that the hierarchical structure of the nanotoroids consist of MCDA nanofibers formed by stacked diacetylene monomers as the basic units, which are further bent and aligned into toroidal organization by electrostatic and hydrophobic interactions with the ANS molecules. The amine moieties on the nanotoroids surface are employed for deposition of gold nanostructures - Au nanoparticles or Au nanosheets - which constitute effective platforms for photocatalysis and surface enhanced Raman scattering (SERS)-based sensing.

4.
ACS Appl Mater Interfaces ; 16(17): 22593-22603, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38626352

RESUMEN

The design of functional supramolecular assemblies from individual molecular building blocks is a fundamental challenge in chemistry and material science. We report on the fabrication of "honeycomb" films by light-induced coassembly of diacetylene derivatives and carbon dots. Specifically, modulating noncovalent interactions between the carbon dots, macrocyclic diacetylene, and anthraquinone diacetylene facilitates formation of thin films exhibiting a long-range, uniform pore structure. We show that light irradiation at distinct wavelengths plays a key role in the assembly process and generation of unique macro-porous morphology, by both initiating interactions between the carbon dots and the anthraquinone moieties and giving rise to the topotactic polymerization of the polydiacetylene network. We further demonstrate utilization of the macro-porous film as a photocatalytic platform for water pollutant degradation and as potential supercapacitor electrodes, both applications taking advantage of the high surface area, hydrophobicity, and pore structure of the film.

5.
Nanomaterials (Basel) ; 13(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37513114

RESUMEN

Carbon quantum dots (CQDs) are known for their biocompatibility and versatile applications in the biomedical sector. These CQDs retain high solubility, robust chemical inertness, facile modification, and good resistance to photobleaching, which makes them ideal for cell bioimaging. Many fabrication processes produce CQDs, but most require expensive equipment, toxic chemicals, and a long processing time. This study developed a facile and rapid toasting method to prepare CQDs using various slices of bread as precursors without any additional chemicals. This fast and cost-effective toasting method could produce CQDs within 2 h, compared with the 10 h process in the commonly used hydrothermal method. The CQDs derived from the toasting method could be used to bioimage two types of colon cancer cells, namely, CT-26 and HT-29, derived from mice and humans, respectively. Significantly, these CQDs from the rapid toasting method produced equally bright images as CQDs derived from the hydrothermal method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA