Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genetics ; 167(4): 1961-73, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15342533

RESUMEN

Polyploidization is an abrupt speciation mechanism for eukaryotes and is especially common in plants. However, little is known about patterns and mechanisms of gene regulation during early stages of polyploid formation. Here we analyzed differential expression patterns of the progenitors' genes among successive selfing generations and independent lineages. The synthetic Arabidopsis allotetraploid lines were produced by a genetic cross between A. thaliana and A. arenosa autotetraploids. We found that some progenitors' genes are differentially expressed in early generations, whereas other genes are silenced in late generations or among different siblings within a selfing generation, suggesting that the silencing of progenitors' genes is rapidly and/or stochastically established. Moreover, a subset of genes is affected in autotetraploid and multiple independent allotetraploid lines and in A. suecica, a natural allotetraploid derived from A. thaliana and A. arenosa, indicating locus-specific susceptibility to ploidy-dependent gene regulation. The role of DNA methylation in silencing progenitors' genes is tested in DNA-hypomethylation transgenic lines of A. suecica using RNA interference (RNAi). Two silenced genes are reactivated in both ddm1- and met1-RNAi lines, consistent with the demethylation of centromeric repeats and gene-specific regions in the genome. A rapid and stochastic process of differential gene expression is reinforced by epigenetic regulation during polyploid formation and evolution.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Poliploidía , Secuencia de Bases , Clonación Molecular , Cartilla de ADN , Silenciador del Gen , Polimorfismo de Longitud del Fragmento de Restricción , ARN de Planta/genética , ARN Interferente Pequeño/genética , Procesos Estocásticos
2.
Plant J ; 41(2): 221-30, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15634199

RESUMEN

Polyploids are common and arise frequently by genome duplication (autopolyploids) or interspecific hybridization (allopolyploids). Neoallopolyploids display sterility, lethality, phenotypic instability, gene silencing and epigenetic changes. Little is known about the molecular basis of these phenomena, and how much genomic remodeling happens upon allopolyploidization. Extensive genomic remodeling has been documented in wheat, but little remodeling occurs in cotton. Newly synthesized Arabidopsis allopolyploids, which display phenotypic instability and low fertility, displayed several, possibly related mechanisms that can remodel genomes. We detected transcriptional activity of several transposons although their transposition was limited. One represents a new family of conditionally active En-Spm-like transposons of Arabidopsis thaliana, which underwent remodeling of CG methylation upon allopolyploidization. A random amplified fragment length polymorphism survey suggested remodeling at few, specific loci. Meiotic analyses revealed the appearance of chromosomal fragments in a substantial fraction of anther meiocytes. In several individuals produced by hybrids between the synthetic and a natural allopolyploid pollen viability inversely correlated with meiotic instability. Activity of selected DNA transposons and the possibly related chromosomal breaks could cause changes by inducing translocations and rearrangements.


Asunto(s)
Arabidopsis/genética , Genoma de Planta , Poliploidía , Mapeo Cromosómico , Elementos Transponibles de ADN , Epigénesis Genética , Filogenia , Técnica del ADN Polimorfo Amplificado Aleatorio , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA