RESUMEN
Novel redox-active hexaguanidine molecules with multiple redox states were synthesized by connecting three o-diguanidinobenzene units. In 2,3,6,7,14,15-hexaguanidino-triptycenes, the three redox-active o-diguanidinobenzene units are connected through C-C bonds to the sp3 -hybridized bridgehead C atoms, and in 2,3,6,7,10,11-hexaguanidino-triphenylenes they are directly connected. The connectivity difference leads to different electronic coupling between the three redox-active o-diguanidinobenzene units, with homoconjugation being present in the triptycene, but not in the triphenylene compounds. Motivated by the appearance of an intense low-energy electronic transition, we especially analysed the effect of homoconjugation on the electronic structure and charge delocalization in the dicationic redox state of the triptycene derivatives. Then, several trinuclear high-spin cobalt (and copper) complexes were synthesized with the triphenylene and triptycene ligands, and the magnetic coupling and redox properties analysed. By choice of the coligands (hexafluoroacetylacetonate, trifluoroacetylacetonate and acetylacetonate), oxidation could be switched between metal- and ligand-centered redox events, leading to drastic changes in the magnetic or optical properties, especially as a consequence of homoconjugation in the triptycene derivatives.
RESUMEN
Dehydrogenative coupling (DC) reactions are of importance for the construction of new carbon-element bonds in synthetic organic chemistry. In this work, we report on the synthesis and characterization of several redox-active guanidino-functionalized aromatic molecules (GFAs) for use in DC (C-C and C-O) reactions. In a systematic approach, we first characterize the new DC reagents in all relevant redox and protonation states, and compare their performance in competitive test proton-coupled electron transfer (PCET) reactions. Then, their use in four different DC reactions with different mechanisms is evaluated.
RESUMEN
Aromatic substitution of redox-active aromatic compounds could be initiated by a preceding redox step. We report on the different reaction pathways of such redox-induced substitution (RIAS) reactions between a redox-active guanidino-functionalized aromatic molecule (GFA) and an amine or guanidine. Oxidation of the GFA leads to an umpolung of the guanidine from a nucleophile to an electrophile and thereby enables addition of the amine or guanidine. Several examples are given, demonstrating the use of redox substitution in synthetic chemistry, e.g. for the convenient synthesis of novel N-heteropolycyclic molecules and unsymmetrically-substituted aromatics.
RESUMEN
The selective formation of homonuclear bonds is of key importance in synthetic chemistry. Especially, dehydrocoupling reactions are attractive as ecologically and economically friendly alternatives to established reductive bond forming reactions, since they do not require the use of stoichiometric amounts of a reducing reagent and produce only valuable dihydrogen as by-product. Here, we report on a metal-free B-B dehydrocoupling reaction that starts directly from a simple, easily accessible BH3 adduct, providing convenient access to a new nucleophilic dihydridodiborane in excellent yield. The dihydridodiborane in turn activates dihydrogen, allowing to obtain quantitatively the dideuteridodiborane from the dihydridodiborane by D2 activation. On the basis of detailed quantum-chemical calculations, the mechanism of this unprecedented reaction is elucidated. Some key points that are essential for metal-free dehydrocoupling are disclosed, paving the way for their systematic evaluation and application.
RESUMEN
The ditriflato-diborane B2 (µ-hpp)2 (OTf)2 (hpp=1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidinate) acts as a stable surrogate of the elusive dication [B2 (hpp)2 ]2+ , being both electrophilic (vacant boron p orbitals) and nucleophilic (filled B-B bond orbital). This combination of seemingly contrasting behaviors could be used to develop a metallomimetic diborane chemistry, with Lewis σ-basic and π-acidic substrates being bound and reduced at the diborane. Here, we report on a novel reaction type within this general theme, in which double electron transfer from the diboron unit to the boron-bound organic substrate is coupled with halide transfer in the other direction. Novel diborylated dienamines are synthesized in this way. The scope of this unprecedented reaction motif and the reaction pathways are elucidated.
RESUMEN
Copper amine oxidases are enzymes that exhibit in their active site a mononuclear copper complex and a 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor; in the oxidative half of the catalytic cycle, the enzymes regulate their activity by a temperature-dependent electron transfer equilibrium between the CuII complex with the reduced, aminoquinol form of the cofactor and the reactive CuI complex with the corresponding oxidized, semiquinone form of the cofactor. Here, we report the first mononuclear copper complex with redox-active ligands showing quantitative, reversible electromerism between a CuII eletromer with reduced, neutral ligand and a CuI electromer with an oxidized, radical monocationic ligand. The CuII form, being exclusively present at low temperature, exhibits a lower enthalpy (like the enzymes), but the CuI complex exhibits a higher entropy and is exclusively present at room temperature in CH2 Cl2 solution. Further analysis, based on six different copper complexes, discloses a large solvent effect on electromerism.
Asunto(s)
Cobre , Electrones , Cobre/química , Ligandos , Transporte de Electrón , Oxidación-ReducciónRESUMEN
Using unconventional synthesis protocols, two redox-active triguanidine units are connected by a dithiolate bridge, aligning the two redox-active units in close proximity. The reduced, neutral and the tetracationic redox states with two dicationic triguanidine units are isolated and fully characterized. Then, the dicationic redox states are prepared by mixing the neutral and tetracationic molecules. At low temperatures, the dications are diamagnetic (singlet ground state) with two different triguanidine units (neutral and dicationic). At room temperature, the triplet state with two radical monocationic triguanidine units is populated. At low temperature (210â K), chemical exchange by intramolecular through-space electron-transfer between the two triguanidine units is evidenced by EXSY NMR spectroscopy. Intramolecular through-space transfer of two electrons from the neutral to the dicationic triguanidine unit is accompanied by migration of the counterions in opposite direction. The rate of double-electron transfer critically depends on the bridge. No electron-transfer is measured in the absence of a bridge (in a mixture of one dicationic and one neutral triguanidine), and relatively slow electron transfer if the bridge does not allow the two triguanidine units to approach each other close enough. The results give detailed, quantitative insight into the factors that influence intramolecular through-space double-electron-transfer processes.
RESUMEN
The chemistry of dicationic diboranes with two BII atoms that are engaged in direct B-B bonding is by enlarge unexplored, although these molecules have intriguing properties due to their combined Lewis acidic and electron-donor properties. Unsymmetric dicationic diboranes are extremely rare, but especially attractive due to their polarized B-B bond. In this work we report the directed synthesis of several stable unsymmetric dicationic diboranes by reaction between the electron-rich ditriflato-diborane B2 (hpp)2 (OTf)2 (hpp=1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-α]pyrimidinate) and phosphino-pyridines, establishing B-N and B-P bonds with the diborane concomitant with triflate elimination. In the case of 2-((ditertbutylphosphino)methyl)pyridine, the B-N bond is formed instantly, but the B-P bond formation requires (due to steric constraints) several days at ambient conditions for completion, creating an intermediate that could be used for frustrated Lewis pair (FLP)-like chemistry. Here we test its reaction with an aldehyde, and propose a new type of FLP-like chemistry.
RESUMEN
The field of molecular transition metal complexes with redox-active ligands is dominated by compounds with one or two units of the same redox-active ligand; complexes in which different redox-active ligands are bound to the same metal are uncommon. This work reports the first molecular coordination compounds in which redox-active bisguanidine or urea azine (biguanidine) ligands as well as oxolene ligands are bound to the same cobalt atom. The combination of two different redox-active ligands leads to mono- as well as unprecedented dinuclear cobalt complexes, being multiple (four or six) center redox systems with intriguing electronic structures, all exhibiting radical ligands. By changing the redox potential of the ligands through derivatisation, the electronic structure of the complexes could be altered in a rational way.
RESUMEN
In this work we report the first cycloaddition reactions between a diazido diborane(4) and terminal alkynes, providing unique access to bis-1,2,3-triazoles connected by a B-B bridge. The catalyst-free reactions are highly selective, yielding exclusively the thermodynamically disfavored bis-1,4-triazoles. The reactions are enabled by the high thermal stability of the diazido-diborane [B(hpp)(N3 )]2 (hpp=1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-α]pyrimidinate). Due to the tetra-coordinate boron atoms in this reagent, the reactions are tolerant with respect to the introduction of Lewis-basic groups at the alkyne. The scope and limitations of the new reactions are discussed.
RESUMEN
Redox-isomeric coordination compounds, in which the magnetic and optical properties could be varied by a stimulated intramolecular electron transfer between the metal and a redox-active ligand, are of interest for several applications in catalysis and materials science. In this work, the redox chemistry of cobalt complexes with redox-active bisguanidine ligands is studied; systematic modifications at the redox-active bisguanidine and the co-ligand units allow for fine-tuning of the electronic structure, which eventually leads to the first observation of redox isomerism for cobalt complexes with redox-active guanidine ligands. Redox isomerism is triggered by a change in the solvent properties.
RESUMEN
Proton-coupled electron transfer (PCET) is of key importance in modern synthetic chemistry. Redox-active guanidines were established by our group as valuable alternatives to toxic high-potential benzoquinones in a variety of different PCET reactions. In this work, the PCET reactivity of a series of 1,4-bisguanidino-benzenes varying in their redox potentials and proton affinities is evaluated. The relevant redox and protonation states are fully characterized, and the compounds sorted with respect to their PCET reactivity by comparative PCET experiments supplemented by quantum-chemical calculations. Depending on the studied reactions, the driving force is either electron transfer or proton transfer; thereby the influence of both processes on the overall reactivity could be assessed. Then, two of the PCET reagents are applied in representative oxidative aryl-aryl coupling reactions, namely the intramolecular coupling of 3,3''-4,4''-tetramethoxy-o-terphenyl to give the corresponding triphenylene, the intermolecular coupling of N-ethylcarbazole to give N,N'-diethyl-3,3'-bicarbazole, and in the oxidative lactonization of 2-[(4-methoxyphenyl)methyl]-benzoic acid. Under mild conditions, the reactions proceed fast and efficient. Only small amounts of acid are needed, in clear contrast to the corresponding coupling reactions with traditional high-potential benzoquinones such as DDQ or chloranil requiring a large excess of a strong acid.
Asunto(s)
Electrones , Protones , Derivados del Benceno , Transporte de Electrón , Oxidación-ReducciónRESUMEN
The control of the redox reactivity, magnetic and optical properties of the different redox states of complexes with redox-active ligands permits their rational use in catalysis and materials science. The redox-chemistry of octahedrally coordinated high-spin CoII complexes (three unpaired electrons) with one redox-active bisguanidine ligand and two acetylacetonato (acac) co-ligands is completely changed by replacing the acac by hexafluoro-acetylacetonato (hfacac) co-ligands. The first one-electron oxidation is metal-centered in the case of the complexes with acac co-ligands, giving diamagnetic CoIII complexes. By contrast, in the case of the less Lewis-basic hfacac co-ligands, the first one-electron oxidation becomes ligand-centered, leading to high-spin CoII complexes with a radical monocationic guanidine ligand unit (four unpaired electrons). Ferromagnetic coupling between the spins on the metal and the organic radical in solution is evidenced by temperature-dependent paramagnetic NMR studies, allowing to estimate the isotropic exchange coupling constant in solution. Second one-electron oxidation leads to high-spin CoII complexes with dicationic guanidine ligand units (three unpaired electrons) in the presence of hfacac co-ligands, but to low-spin CoIII complexes with radical monocationic, peralkylated guanidine ligand (one unpaired electron) in the presence of acac co-ligands. The analysis of the electronic structures is complemented by quantum-chemical calculations on the spin density distributions and relative energies of the possible redox isomers.
RESUMEN
Cationic cyclophanes are widely used in a variety of applications in supramolecular chemistry and materials science. In this work the authors systematically study the integration of electron-rich diboron units with BII atoms into polycationic cyclophanes with viologen-like electron-acceptor units. They also report a first hexacationic cage-compound in which three diboron units connect two tris(4-pyridyl)triazine acceptor units. Moreover, di- and tetracationic open-structure compounds, in which one diboron unit connects two bispyridyl groups, were synthesized and the properties compared to those of the corresponding closed structures (cyclophanes). The combination of diboron electron-donor units and bi- or oligopyridyl electron-acceptor units leads to intriguing optical and redox properties.
RESUMEN
Intramolecular electron transfer (IET) between a redox-active organic ligand and a metal in a complex is of fundamental interest and used in a variety of applications. In this work it is demonstrated that secondary coordination sphere motifs can be applied to trigger a radical change in the electronic structure of copper complexes with a redox-active guanidine ligand through ligand-metal IET. Hence, crown ether functions attached to the ligand allow the manipulation of the degree of IET between the guanidine ligand and the copper atom through metal encapsulation.
RESUMEN
Invited for the cover of this issue is the group of Hans-Jörg Himmel at Ruprecht-Karls-Universität Heidelberg. The image depicts the electron transfer process using copper complexes with redox-active guanidines. Read the full text of the article at 10.1002/chem.202003469.
RESUMEN
Octahedrally coordinated cobalt(II) complexes with a redox-active bisguanidine ligand and acac co-ligands were synthesized and their redox chemistry analysed in detail. The N-H functions in a bisguanidine ligand with partially alkylated guanidino groups form N-Hâ â â O hydrogen bonds with the acac co-ligands, thereby massively influencing the redox chemistry. For all complexes, the first one-electron oxidation is metal-centred, leading to CoIII complexes with neutral bisguanidine ligand units. Further one-electron oxidation is ligand-centred in the case of Co-bisguanidine complexes with fully alkylated guanidino groups, giving CoIII complexes with radical monocationic bisguanidine ligands. On the other hand, the hydrogen-bond strengthening upon oxidation of the Co-bisguanidine complex with partially alkylated guanidino groups initiates metal reduction (CoIII âCoII ) and two-electron oxidation of the guanidine ligand, providing the first example for the stimulation of redox-induced electron transfer by interligand hydrogen bonding.
RESUMEN
Two homoleptic copper(II) complexes [Cu(L1)2 ] and [Cu(L2)2 ] with anionic redox-active ligands were synthesised, one with urea azine (L1) and the other with thio-urea azine (L2) ligands. One-electron oxidation of the complexes initiates an unprecedented redox-induced electron transfer process, leading to monocationic copper(I) complexes [Cu(L1)2 ]+ and [Cu(L2)2 ]+ with two oxidised ligands. While [Cu(L1)2 ]+ is best described as a CuI complex with two neutral radical ligands that couple antiferromagnetically, [Cu(L2)2 ]+ is a CuI complex with two clearly different ligand units in the solid state and with a magnetic susceptibility close to a diamagnetic compound. Further one-electron oxidation of the complex with L1 ligands results in a dication [Cu(L1)2 ]2+ , best described as a CuI complex with a twofold oxidised, monocationic ligand and a neutral radical ligand. The stability in at least three redox states, the accumulation of spin density at the ligands and the facile ligand-metal electron transfer make these complexes highly attractive for a variety of applications; here the catalytic aerobic oxidation of alcohols to aldehydes is tested.
RESUMEN
Herein, the first hetero Diels-Alder (DA) reactions with a stable, dicationic urea azine derived azo dienophile, synthesized by two-electron oxidation of a neutral urea azine are reported. Several charged DA products were synthesized in good yield and fully characterized. The DA adduct of anthracene is in thermal equilibrium with the reactants at room temperature, and the reaction enthalpy and entropy were determined from the temperature-dependent equilibrium constant. Furthermore, base addition to solutions of the pentacene DA product led to deprotonation, cleavage of the N-N bond, and formation of an electron-rich 6,13-bisguanidinyl-substituted pentacene. The redox and optical properties of this new pentacene derivative were studied. Furthermore, the dication resulting from its two-electron oxidation was synthesized and fully characterized. The results disclose a new elegant route to electron-rich pentacene derivatives.
RESUMEN
Herein reported are the reactions of an electron-rich, Lewis acidic diborane with N-heterocyclic aromatics to give first members of an unprecedented family of highly charged cationic cyclophanes with diboranyl units. Tetracationic cyclophanes with 4,4'-bipyridine/ 1,2-bis(4-pyridyl)ethylene and diboranyl units were synthesized and their redox chemistry was studied. Cyclisation of two diboranyl and two pyrazine units is accompanied by electron transfer from the diboranyl unit to the pyrazine. Our results pave the way for the integration of redox-active diboranyl units into cyclophanes and supramolecular structures.