RESUMEN
Conventional dendritic cells (cDC) are bone marrow-derived immune cells that play a central role in linking innate and adaptive immunity. cDCs efficiently uptake, process and present antigen to naïve T cells, driving clonal expansion of antigen-specific T-cell responses. In chicken, vital reagents are lacking for the efficient and precise identification of cDCs. In this study, we have developed several novel reagents for the identification and characterization of chicken cDCs. Chicken FLT3 cDNA was cloned and a monoclonal antibody to cell surface FLT3 was generated. This antibody identified a distinct FLT3HI splenic subset which lack expression of signature markers for B cells, T cells or monocyte/macrophages. By combining anti-FLT3 and CSF1R-eGFP transgenic expression, three major populations within the mononuclear phagocyte system were identified in the spleen. The cDC1 subset of mammalian cDCs express the chemokine receptor XCR1. To characterize chicken cDCs, a synthetic chicken chemokine (C motif) ligand (XCL1) peptide conjugated to Alexa Fluor 647 was developed (XCL1AF647 ). Flow cytometry staining of XCL1AF647 on splenocytes showed that all chicken FLT3HI cells exclusively express XCR1, supporting the hypothesis that this population comprises bona fide chicken cDCs. Further analysis revealed that chicken cDCs expressed CSF1R but lacked the expression of CSF2R. Collectively, the cell surface phenotypes of chicken cDCs were partially conserved with mammalian XCR1+ cDC1, with distinct differences in CSF1R and CSF2R expression compared with mammalian orthologues. These original reagents allow the efficient identification of chicken cDCs to investigate their important roles in the chicken immunity and diseases.
Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Tirosina Quinasa 3 Similar a fms/metabolismo , Animales , Anticuerpos Monoclonales , Biomarcadores , Técnicas de Cultivo de Célula , Pollos , Técnica del Anticuerpo Fluorescente , Expresión Génica , Humanos , Inmunofenotipificación , Receptores Acoplados a Proteínas G/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Tirosina Quinasa 3 Similar a fms/genéticaRESUMEN
The phosphatidylserine receptor TIM4, encoded by TIMD4, mediates the phagocytic uptake of apoptotic cells. We applied anti-chicken TIM4 mAbs in combination with CSF1R reporter transgenes to dissect the function of TIM4 in the chick (Gallus gallus). During development in ovo, TIM4 was present on the large majority of macrophages, but expression became more heterogeneous posthatch. Blood monocytes expressed KUL01, class II MHC, and CSF1R-mApple uniformly. Around 50% of monocytes were positive for surface TIM4. They also expressed many other monocyte-specific transcripts at a higher level than TIM4- monocytes. In liver, highly phagocytic TIM4hi cells shared many transcripts with mammalian Kupffer cells and were associated with uptake of apoptotic cells. Although they expressed CSF1R mRNA, Kupffer cells did not express the CSF1R-mApple transgene, suggesting that additional CSF1R transcriptional regulatory elements are required by these cells. By contrast, CSF1R-mApple was detected in liver TIM4lo and TIM4- cells, which were not phagocytic and were more abundant than Kupffer cells. These cells expressed CSF1R alongside high levels of FLT3, MHCII, XCR1, and other markers associated with conventional dendritic cells in mice. In bursa, TIM4 was present on the cell surface of two populations. Like Kupffer cells, bursal TIM4hi phagocytes coexpressed many receptors involved in apoptotic cell recognition. TIM4lo cells appear to be a subpopulation of bursal B cells. In overview, TIM4 is associated with phagocytes that eliminate apoptotic cells in the chick. In the liver, TIM4 and CSF1R reporters distinguished Kupffer cells from an abundant population of dendritic cell-like cells.
Asunto(s)
Fagocitos/inmunología , Receptores de Superficie Celular/inmunología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Pollos , Receptores de Superficie Celular/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genéticaRESUMEN
Avian pathogenic E. coli (APEC) cause severe respiratory and systemic disease. To address the genetic and immunological basis of resistance, inbred chicken lines were used to establish a model of differential resistance to APEC, using strain O1 of serotype O1:K1:H7. Inbred lines 72, 15I and C.B12 and the outbred line Novogen Brown were inoculated via the airsac with a high dose (107 colony-forming units, CFU) or low dose (105 CFU) of APEC O1. Clinical signs, colibacillosis lesion score and bacterial colonization of tissues after high dose challenge were significantly higher in line 15I and C.B12 birds. The majority of the 15I and C.B12 birds succumbed to the infection by 14â h post-infection, whilst none of the line 72 and the Novogen Brown birds developed clinical signs. No difference was observed after low dose challenge. In a repeat study, inbred lines 72 and 15I were inoculated with low, intermediate or high doses of APEC O1 ranging from 105 to 107 CFU. The colonization of lung was highest in line 15I after high dose challenge and birds developed clinical signs; however, colonization of blood and spleen, clinical signs and lesion score were not different between lines. No difference was observed after intermediate or low dose challenge. Ex vivo, the phagocytic and bactericidal activity of lung leukocytes from line 72 and 15I birds did not differ. Our data suggest that although differential resistance of inbred lines 72, 15I and C.B12 to APEC O1 challenge is apparent, it is dependent on the infectious dose. Research Highlights Lines 15I and C.B12 are more susceptible than line 72 to a high dose of APEC O1. Differential resistance is dose-dependent in lines 15I and 72. Phagocytic and bactericidal activity is similar and dose independent.
Asunto(s)
Pollos , Resistencia a la Enfermedad , Infecciones por Escherichia coli/veterinaria , Escherichia coli/inmunología , Inmunidad Innata , Enfermedades de las Aves de Corral/inmunología , Sacos Aéreos/microbiología , Animales , Animales Endogámicos , Anticuerpos Heterófilos/inmunología , Carga Bacteriana , Relación Dosis-Respuesta Inmunológica , Escherichia coli/genética , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Femenino , Macrófagos/inmunología , Masculino , Enfermedades de las Aves de Corral/microbiología , Organismos Libres de Patógenos EspecíficosRESUMEN
Chicken anaemia virus (CAV) is a lymphotropic virus that causes anaemia and immunosuppression in chickens. Previously, we proposed that CAV evades host antiviral responses in vivo by disrupting T-cell signalling, but the precise cellular targets and modes of action remain elusive. In this study, we examined gene expression in Marek's disease virus-transformed chicken T-cell line MSB-1 after infection with CAV using both a custom 5K immune-focused microarray and quantitative real-time PCR at 24, 48 and 72 h post-infection. The data demonstrate an intricate equilibrium between CAV and the host gene expression, displaying subtle but significant modulation of transcripts involved in the T-cell, inflammation and NF-κB signalling cascades. CAV efficiently blocked the induction of type-I interferons and interferon-stimulated genes at 72 h. The cell expression pattern implies that CAV subverts host antiviral responses and that the transformed environment of MSB-1 cells offers an opportunistic advantage for virus growth.
RESUMEN
The respiratory tract is a key organ for many avian pathogens as well as a major route for vaccination in the poultry industry. To improve immune responses after vaccination of chickens through increased uptake of vaccines and targeting to antigen presenting cells, a better understanding of the avian respiratory immune system is required. Transgenic MacReporter birds were used expressing a reporter gene (eGFP or mApple) under the control of the CSF1R promoter and enhancer in cells of the mononuclear phagocyte (MNP) lineage to visualize the ontogeny of the lymphoid tissue, macrophages and dendritic cells, in the trachea, lung and air sac of birds from embryonic day 18-63 weeks of age. Small aggregates of CSF1R-transgene+ cells start to form at the openings of the secondary bronchi at 1 week of age, indicative of the early development of the organised bronchus-associated lymphoid tissue. Immunohistochemical staining revealed subpopulations of MNPs in the lung, based on expression of CSF1R-transgene, CD11, TIM4, LAMP1, and MHC II. Specialised epithelial cells or M cells covering the bronchus-associated lymphoid tissue expressed CSF1R-transgene and type II pneumocytes expressed LAMP1 suggesting that these epithelial cells are phagocytic and transcytose antigen. Highly organised lymphoid tissue was seen in trachea from 4 weeks onwards. Throughout the air sacs at all ages, CSF1R-transgene+ cells were scattered and at later stages, CSF1R-transgene+ cells lined capillaries. These results will serve as a base for further functional characterization of macrophages and dendritic cells and their role in respiratory diseases and vaccine responses.
Asunto(s)
Pollos/genética , Pollos/inmunología , Macrófagos/inmunología , Monocitos/metabolismo , Sacos Aéreos/inmunología , Sacos Aéreos/metabolismo , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/inmunología , Animales Modificados Genéticamente/metabolismo , Pollos/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Tráquea/inmunología , Tráquea/metabolismoRESUMEN
Campylobacter jejuni is the leading cause of bacterial food-borne gastroenteritis worldwide and human infections are frequently associated with handling and consumption of contaminated poultry. The polysaccharide capsule of C. jejuni plays important roles in colonisation of the chicken gut, invasion of epithelial cells and serum resistance and is subject to modification with O-methyl phosphoramidate (MeOPN) in most strains. In this study, the cytokine responses of mouse bone marrow-derived macrophages (mBMMs), chicken bone marrow-derived macrophages (chBMMs) and human monocyte-derived macrophages (hMDMs) were measured following infection with C. jejuni 11168H wild-type (WT) or isogenic mutants lacking either the capsule (Δcj1439) or its MeOPN modification (Δcj1417). Consistent with previous observations using murine bone marrow-derived dendritic cells, mutants lacking the capsule or MeOPN elicited enhanced transcription of IL-6 and IL-10 in mBMMs compared to wild-type C. jejuni. However, the lack of capsule and MeOPN did not alter IL-6 and IL-10 expression in chBMMs and hMDMs compared to C. jejuni WT. Phagocytosis assays showed the acapsular mutant was not impaired in uptake or net intracellular survival after phagocytosis in both chicken and human macrophages; however, the phagocytosis of the MeOPN mutant was significantly decreased in both chicken and human macrophages. In conclusion, differences in the response of macrophages of varying host origin to Campylobacter were detected. The absence of MeOPN modification on the capsule of C. jejuni did not alter the levels of innate cytokine expression in both chicken and human macrophages compared to the 11168H WT, but affected phagocytosis by host macrophages.
Asunto(s)
Infecciones por Campylobacter/veterinaria , Campylobacter jejuni/fisiología , Pollos , Macrófagos/metabolismo , Enfermedades de las Aves de Corral/microbiología , Amidas/metabolismo , Animales , Cápsulas Bacterianas/metabolismo , Médula Ósea , Infecciones por Campylobacter/microbiología , Campylobacter jejuni/genética , Citocinas/metabolismo , Humanos , Monocitos/metabolismo , Mutación , Ácidos Fosfóricos/metabolismo , RatasRESUMEN
BACKGROUND: Coccidiosis is a major contributor to losses in poultry production. With emerging constraints on the use of in-feed prophylactic anticoccidial drugs and the relatively high costs of effective vaccines, there are commercial incentives to breed chickens with greater resistance to this important production disease. To identify phenotypic biomarkers that are associated with the production impacts of coccidiosis, and to assess their covariance and heritability, 942 Cobb500 commercial broilers were subjected to a defined challenge with Eimeria tenella (Houghton). Three traits were measured: weight gain (WG) during the period of infection, caecal lesion score (CLS) post mortem, and the level of a serum biomarker of intestinal inflammation, i.e. circulating interleukin 10 (IL-10), measured at the height of the infection. RESULTS: Phenotypic analysis of the challenged chicken cohort revealed a significant positive correlation between CLS and IL-10, with significant negative correlations of both these traits with WG. Eigenanalysis of phenotypic covariances between measured traits revealed three distinct eigenvectors. Trait weightings of the first eigenvector, (EV1, eigenvalue = 59%), were biologically interpreted as representing a response of birds that were susceptible to infection, with low WG, high CLS and high IL-10. Similarly, the second eigenvector represented infection resilience/resistance (EV2, 22%; high WG, low CLS and high IL-10), and the third eigenvector tolerance (EV3, 19%; high WG, high CLS and low IL-10), respectively. Genome-wide association studies (GWAS) identified two SNPs that were associated with WG at the suggestive level. CONCLUSIONS: Eigenanalysis separated the phenotypic impact of a defined challenge with E. tenella on WG, caecal inflammation/pathology, and production of IL-10 into three major eigenvectors, indicating that the susceptibility-resistance axis is not a single continuous quantitative trait. The SNPs identified by the GWAS for body weight were located in close proximity to two genes that are involved in innate immunity (FAM96B and RRAD).
Asunto(s)
Pollos/genética , Coccidiosis/veterinaria , Eimeria tenella/patogenicidad , Interleucina-10/sangre , Animales , Peso Corporal/genética , Ciego/patología , Coccidiosis/genética , Resistencia a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Interleucina-10/genética , Fenotipo , Polimorfismo de Nucleótido Simple , Enfermedades de las Aves de Corral/genética , Aumento de Peso/genéticaRESUMEN
Marek's disease virus (MDV) is an alphaherpesvirus that induces T-cell lymphomas in chickens. Natural infections in vivo are caused by the inhalation of infected poultry house dust and it is presumed that MDV infection is initiated in the macrophages from where the infection is passed to B cells and activated T cells. Virus can be detected in B and T cells and macrophages in vivo, and both B and T cells can be infected in vitro. However, attempts to infect macrophages in vitro have not been successful. The aim of this study was to develop a model for infecting phagocytes [macrophages and dendritic cells (DCs)] with MDV in vitro and to characterize the infected cells. Chicken bone marrow cells were cultured with chicken CSF-1 or chicken IL-4 and chicken CSF-2 for 4 days to produce macrophages and DCs, respectively, and then co-cultured with FACS-sorted chicken embryo fibroblasts (CEFs) infected with recombinant MDV expressing EGFP. Infected phagocytes were identified and sorted by FACS using EGFP expression and phagocyte-specific mAbs. Detection of MDV-specific transcripts of ICP4 (immediate early), pp38 (early), gB (late) and Meq by RT-PCR provided evidence for MDV replication in the infected phagocytes. Time-lapse confocal microscopy was also used to demonstrate MDV spread in these cells. Subsequent co-culture of infected macrophages with CEFs suggests that productive virus infection may occur in these cell types. This is the first report of in vitro infection of phagocytic cells by MDV.
Asunto(s)
Herpesvirus Gallináceo 2/fisiología , Fagocitos/virología , Replicación Viral , Animales , Células Cultivadas , Pollos , Técnicas de Cocultivo , Enfermedad de Marek/virología , Modelos BiológicosRESUMEN
We have generated the first transgenic chickens in which reporter genes are expressed in a specific immune cell lineage, based upon control elements of the colony stimulating factor 1 receptor (CSF1R) locus. The Fms intronic regulatory element (FIRE) within CSF1R is shown to be highly conserved in amniotes and absolutely required for myeloid-restricted expression of fluorescent reporter genes. As in mammals, CSF1R-reporter genes were specifically expressed at high levels in cells of the macrophage lineage and at a much lower level in granulocytes. The cell lineage specificity of reporter gene expression was confirmed by demonstration of coincident expression with the endogenous CSF1R protein. In transgenic birds, expression of the reporter gene provided a defined marker for macrophage-lineage cells, identifying the earliest stages in the yolk sac, throughout embryonic development and in all adult tissues. The reporter genes permit detailed and dynamic visualisation of embryonic chicken macrophages. Chicken embryonic macrophages are not recruited to incisional wounds, but are able to recognise and phagocytose microbial antigens.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Macrófagos/citología , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Aves , Linaje de la Célula , Pollos , Células Dendríticas/citología , Genes Reporteros , Técnicas Genéticas , Sistema Inmunológico , Intrones , Datos de Secuencia Molecular , Fagocitosis , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie , Transgenes , Saco Vitelino/fisiologíaRESUMEN
T-cell immunoglobulin and mucin (TIM) family molecules are cell membrane proteins, preferentially expressed on various immune cells and implicated in recognition and clearance of apoptotic cells. Little is known of their function outside human and mouse, and nothing outside mammals. We identified only two TIM genes (chTIM) in the chicken genome, putative orthologues of mammalian TIM1 and TIM4, and cloned the respective cDNAs. Like mammalian TIM1, chTIM1 expression was restricted to lymphoid tissues and immune cells. The gene chTIM4 encodes at least five splice variants with distinct expression profiles that also varied between strains of chicken. Expression of chTIM4 was detected in myeloid antigen-presenting cells, and in γδ T cells, whereas mammalian TIM4 is not expressed in T cells. Like the mammalian proteins, chTIM1 and chTIM4 fusion proteins bind to phosphatidylserine, and are thereby implicated in recognition of apoptotic cells. The chTIM4-immunoglobulin fusion protein also had co-stimulatory activity on chicken T cells, suggesting a function in antigen presentation.
Asunto(s)
Apoptosis , Proteínas Aviares/genética , Pollos , Tejido Linfoide/fisiología , Linfocitos T/inmunología , Animales , Apoptosis/genética , Células Cultivadas , Clonación Molecular , Biología Computacional , Receptor Celular 1 del Virus de la Hepatitis A/genética , Humanos , Proteínas de la Membrana/genética , Ratones , Polimorfismo Genético , Unión Proteica , Análisis de Secuencia de ADN , Transducción de SeñalRESUMEN
UNLABELLED: Chicken whole-genome gene expression arrays were used to analyze the host response to infection by infectious bursal disease virus (IBDV). Spleen and bursal tissue were examined from control and infected birds at 2, 3, and 4 days postinfection from two lines that differ in their resistance to IBDV infection. The host response was evaluated over this period, and differences between susceptible and resistant chicken lines were examined. Antiviral genes, including IFNA, IFNG, MX1, IFITM1, IFITM3, and IFITM5, were upregulated in response to infection. Evaluation of this gene expression data allowed us to predict several genes as candidates for involvement in resistance to IBDV. IMPORTANCE: Infectious bursal disease (IBD) is of economic importance to the poultry industry and thus is also important for food security. Vaccines are available, but field strains of the virus are of increasing virulence. There is thus an urgent need to explore new control solutions, one of which would be to breed birds with greater resistance to IBD. This goal is perhaps uniquely achievable with poultry, of all farm animal species, since the genetics of 85% of the 60 billion chickens produced worldwide each year is under the control of essentially two breeding companies. In a comprehensive study, we attempt here to identify global transcriptomic differences in the target organ of the virus between chicken lines that differ in resistance and to predict candidate resistance genes.
Asunto(s)
Infecciones por Birnaviridae/inmunología , Infecciones por Birnaviridae/veterinaria , Virus de la Enfermedad Infecciosa de la Bolsa/inmunología , Virus de la Enfermedad Infecciosa de la Bolsa/fisiología , Enfermedades de las Aves de Corral/inmunología , Animales , Bolsa de Fabricio/patología , Pollos , Resistencia a la Enfermedad , Perfilación de la Expresión Génica , Análisis por Micromatrices , Bazo/patología , Factores de TiempoRESUMEN
BACKGROUND: The majority of chickens in sub-Saharan Africa are indigenous ecotypes, well adapted to the local environment and raised in scavenging production systems. Although they are generally resilient to disease challenge, routine vaccination and biosecurity measures are rarely applied and infectious diseases remain a major cause of mortality and reduced productivity. Management and genetic improvement programmes are hampered by lack of routine data recording. Selective breeding based on genomic technologies may provide the means to enhance sustainability. In this study, we investigated the genetic architecture of antibody response to four major infectious diseases [infectious bursal disease (IBDV), Marek's disease (MDV), fowl typhoid (SG), fowl cholera (PM)] and resistance to Eimeria and cestode parasitism, along with two production traits [body weight and body condition score (BCS)] in two distinct indigenous Ethiopian chicken ecotypes. We conducted variance component analyses, genome-wide association studies, and pathway and selective sweep analyses. RESULTS: The large majority of birds was found to have antibody titres for all pathogens and were infected with both parasites, suggesting almost universal exposure. We derived significant moderate to high heritabilities for IBDV, MDV and PM antibody titres, cestodes infestation, body weight and BCS. We identified single nucleotide polymorphisms (SNPs) with genome-wide significance for each trait. Based on these associations, we identified for each trait, pathways, networks and functional gene clusters that include plausible candidate genes. Selective sweep analyses revealed a locus on chromosome 18 associated with viral antibody titres and resistance to Eimeria parasitism that is within a positive selection signal. We found no significant genetic correlations between production, immune and disease traits, implying that selection for altered antibody response and/or disease resistance will not affect production. CONCLUSIONS: We confirmed the presence of genetic variability and identified SNPs significantly associated with immune, disease and production traits in indigenous village chickens. Results underpin the feasibility of concomitant genetic improvement for enhanced antibody response, resistance to parasitism and productivity within and across indigenous chicken ecotypes.
RESUMEN
BACKGROUND: Small insertions and deletions (InDels) constitute the second most abundant class of genetic variants and have been found to be associated with many traits and diseases. The present study reports on the detection and characterisation of about 883 K high quality InDels from the whole-genome analysis of several modern layer chicken lines from diverse breeds. RESULTS: To reduce the error rates seen in InDel detection, this study used the consensus set from two InDel-calling packages: SAMtools and Dindel, as well as stringent post-filtering criteria. By analysing sequence data from 163 chickens from 11 commercial and 5 experimental layer lines, this study detected about 883 K high quality consensus InDels with 93% validation rate and an average density of 0.78 InDels/kb over the genome. Certain chromosomes, viz, GGAZ, 16, 22 and 25 showed very low densities of InDels whereas the highest rate was observed on GGA6. In spite of the higher recombination rates on microchromosomes, the InDel density on these chromosomes was generally lower relative to macrochromosomes possibly due to their higher gene density. About 43-87% of the InDels were found to be fixed within each line. The majority of detected InDels (86%) were 1-5 bases and about 63% were non-repetitive in nature while the rest were tandem repeats of various motif types. Functional annotation identified 613 frameshift, 465 non-frameshift and 10 stop-gain/loss InDels. Apart from the frameshift and stopgain/loss InDels that are expected to affect the translation of protein sequences and their biological activity, 33% of the non-frameshift were predicted as evolutionary intolerant with potential impact on protein functions. Moreover, about 2.5% of the InDels coincided with the most-conserved elements previously mapped on the chicken genome and are likely to define functional elements. InDels potentially affecting protein function were found to be enriched for certain gene-classes e.g. those associated with cell proliferation, chromosome and Golgi organization, spermatogenesis, and muscle contraction. CONCLUSIONS: The large catalogue of InDels presented in this study along with their associated information such as functional annotation, estimated allele frequency, etc. are expected to serve as a rich resource for application in future research and breeding in the chicken.
Asunto(s)
Pollos/genética , Genoma , Mutación INDEL/genética , Eliminación de Secuencia/genética , Secuencia de Aminoácidos , Animales , Polimorfismo de Nucleótido SimpleRESUMEN
Avian pathogenic Escherichia coli (APEC) infections are a serious impediment to sustainable poultry production worldwide. Licensed vaccines are available, but the immunological basis of protection is ill-defined and a need exists to extend cross-serotype efficacy. Here, we analysed innate and adaptive responses induced by commercial vaccines in turkeys. Both a live-attenuated APEC O78 ΔaroA vaccine (Poulvac® E. coli) and a formalin-inactivated APEC O78 bacterin conferred significant protection against homologous intra-airsac challenge in a model of acute colibacillosis. Analysis of expression levels of signature cytokine mRNAs indicated that both vaccines induced a predominantly Th2 response in the spleen. Both vaccines resulted in increased levels of serum O78-specific IgY detected by ELISA and significant splenocyte recall responses to soluble APEC antigens at post-vaccination and post-challenge periods. Supplementing a non-adjuvanted inactivated vaccine with Th2-biasing (Titermax® Gold or aluminium hydroxide) or Th1-biasing (CASAC or CpG motifs) adjuvants, suggested that Th2-biasing adjuvants may give more protection. However, all adjuvants tested augmented humoral responses and protection relative to controls. Our data highlight the importance of both cell-mediated and antibody responses in APEC vaccine-mediated protection toward the control of a key avian endemic disease.
Asunto(s)
Inmunidad Adaptativa , Infecciones por Escherichia coli/veterinaria , Vacunas contra Escherichia coli/inmunología , Inmunidad Innata , Enfermedades de las Aves de Corral/inmunología , Pavos , Animales , Ensayo de Inmunoadsorción Enzimática/veterinaria , Escherichia coli/fisiología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Femenino , Enfermedades de las Aves de Corral/microbiología , Vacunas Atenuadas/inmunología , Vacunas de Productos Inactivados/inmunologíaRESUMEN
BACKGROUND: Infectious Bronchitis is a highly contagious respiratory disease which causes tracheal lesions and also affects the reproductive tract and is responsible for large economic losses to the poultry industry every year. This is due to both mortality (either directly provoked by IBV itself or due to subsequent bacterial infection) and lost egg production. The virus is difficult to control by vaccination, so new methods to curb the impact of the disease need to be sought. Here, we seek to identify genes conferring resistance to this coronavirus, which could help in selective breeding programs to rear chickens which do not succumb to the effects of this disease. METHODS: Whole genome gene expression microarrays were used to analyse the gene expression differences, which occur upon infection of birds with Infectious Bronchitis Virus (IBV). Tracheal tissue was examined from control and infected birds at 2, 3 and 4 days post-infection in birds known to be either susceptible or resistant to the virus. The host innate immune response was evaluated over these 3 days and differences between the susceptible and resistant lines examined. RESULTS: Genes and biological pathways involved in the early host response to IBV infection were determined andgene expression differences between susceptible and resistant birds were identified. Potential candidate genes for resistance to IBV are highlighted. CONCLUSIONS: The early host response to IBV is analysed and potential candidate genes for disease resistance are identified. These putative resistance genes can be used as targets for future genetic and functional studies to prove a causative link with resistance to IBV.
Asunto(s)
Pollos , Infecciones por Coronavirus/veterinaria , Predisposición Genética a la Enfermedad , Virus de la Bronquitis Infecciosa/inmunología , Enfermedades de las Aves de Corral/virología , Animales , Pollos/genética , Infecciones por Coronavirus/inmunología , Regulación de la Expresión Génica/inmunología , Genoma , Inmunidad Innata , Enfermedades de las Aves de Corral/inmunología , Análisis por Matrices de Proteínas/veterinaria , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Carga ViralRESUMEN
BACKGROUND: Very virulent infectious bursal disease virus (vvIBDV) induces immunosuppression and inflammation in young birds, which subsequently leads to high mortality. In addition, infectious bursal disease (IBD) is one of the leading causes of vaccine failure on farms. Therefore, understanding the immunopathogenesis of IBDV in both the spleen and the bursae could help effective vaccine development. However, previous studies only profiled the differential expression of a limited number of cytokines, in either the spleen or the bursae of Fabricius of IBDV-infected chickens. Thus, this study aims to evaluate the in vitro and in vivo immunoregulatory effects of vvIBDV infection on macrophage-like cells, spleen and bursae of Fabricius. RESULTS: The viral load was increased during the progression of the in vitro infection in the HD11 macrophage cell line and in vivo, but no significant difference was observed between the spleen and the bursae tissue. vvIBDV infection induced the expression of pro-inflammatory and Th1 cytokines, and chemokines from HD11 cells in a time- and dosage-dependent manner. Furthermore, alterations in the lymphocyte populations, cytokine and chemokine expression, were observed in the vvIBDV-infected spleens and bursae. A drastic rise was detected in numbers of macrophages and pro-inflammatory cytokine expression in the spleen, as early as 2 days post-infection (dpi). On 4 dpi, macrophage and T lymphocyte infiltration, associated with the peak expression of pro-inflammatory cytokines in the bursae tissues of infected chickens were observed. The majority of the significantly regulated pro-inflammatory cytokines and chemokines, in vvIBDV-infected spleens and bursae, were also detected in vvIBDV-infected HD11 cells. This cellular infiltration subsequently resulted in a sharp rise in nitric oxide (NO) and lipid peroxidation levels. CONCLUSION: This study suggests that macrophage may play an important role in regulating the early expression of pro-inflammatory cytokines, first in the spleen and then in the bursae, the latter tissue undergoing macrophage infiltration at 4 dpi.
Asunto(s)
Infecciones por Birnaviridae/veterinaria , Bolsa de Fabricio/metabolismo , Pollos , Citocinas/metabolismo , Virus de la Enfermedad Infecciosa de la Bolsa/patogenicidad , Enfermedades de las Aves de Corral/virología , Animales , Infecciones por Birnaviridae/inmunología , Infecciones por Birnaviridae/metabolismo , Infecciones por Birnaviridae/virología , Línea Celular , Citocinas/genética , Citometría de Flujo , Regulación de la Expresión Génica/inmunología , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/metabolismo , ARN Viral/metabolismo , Organismos Libres de Patógenos Específicos , Bazo/metabolismo , Carga Viral , VirulenciaRESUMEN
The interleukin-1 gene family encodes a group of related proteins that exhibit a remarkable pleiotropy in the context of health and disease. The set of indispensable functions they control suggests that these genes should be found in all eukaryotic species. The ligands and receptors of this family have been primarily characterised in man and mouse. The genomes of most non-mammalian animal species sequenced so far possess all of the IL-1 receptor genes found in mammals. Yet, strikingly, very few of the ligands are identifiable in non-mammalian genomes. Our recent identification of two further IL-1 ligands in the chicken warranted a critical reappraisal of the evolution of this vitally important cytokine family. This review presents substantial data gathered across multiple, divergent metazoan genomes to unambiguously trace the origin of these genes. With the hypothesis that all of these genes, both ligands and receptors, were formed in a single ancient ancestor, extensive database mining revealed sufficient evidence to confirm this. It therefore suggests that the emergence of mammals is unrelated to the expansion of the IL-1 family. A thorough review of this cytokine family in the chicken, the most extensively studied amongst non-mammalian species, is also presented.
Asunto(s)
Proteínas Aviares/genética , Pollos/genética , Pollos/inmunología , Interleucina-1/genética , Animales , Evolución Molecular , Humanos , Ligandos , Ratones , Familia de Multigenes , Filogenia , Receptores de Interleucina-1/genética , Vertebrados/genética , Vertebrados/inmunologíaRESUMEN
Avian pathogenic Escherichia coli (APEC) cause severe respiratory and systemic disease in poultry yet the nature and consequences of host immune responses to infection are poorly understood. Here, we describe a turkey sub-acute respiratory challenge model and cytokine, cell-mediated and humoral responses associated with protection against homologous re-challenge. Intra-airsac inoculation of turkeys with 105 colony-forming units of APEC O78:H9 strain χ7122nalR induced transient and mild clinical signs of colibacillosis followed by clearance of the bacteria from the lungs and visceral organs. Upon re-challenge with 107 χ7122nalR, primed birds were solidly protected against clinical signs and exhibited negligible bacterial loads in visceral organs, whereas age-matched control birds exhibited high lesion scores and bacterial loads in the organs. Levels of mRNA for signature cytokines suggested induction of a Th1 response in the lung, whereas a distinct anti-inflammatory cytokine profile was detected in the liver. Proliferative responses of splenocytes to either Concanavalin A or soluble χ7122nalR antigens were negligible prior to clearance of bacteria, but APEC-specific responses were significantly elevated at later time intervals and at re-challenge relative to control birds. Primary infection also induced significantly elevated χ7122nalR-specific serum IgY and bile IgA responses which were bactericidal against χ7122nalR and an isogenic Δrfb mutant. Bactericidal activity was observed in the presence of immune, but not heat-inactivated immune serum, indicating that the antibodies can fix complement and are not directed solely at the lipopolysaccharide O-antigen. Such data inform the rational design of strategies to control a recalcitrant endemic disease of poultry.
Asunto(s)
Infecciones por Escherichia coli/inmunología , Escherichia coli/inmunología , Inmunidad Celular , Inmunidad Humoral , Enfermedades de las Aves de Corral/inmunología , Pavos , Animales , Antígenos Bacterianos/metabolismo , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática/veterinaria , Infecciones por Escherichia coli/microbiología , Reacción en Cadena de la Polimerasa/veterinaria , Enfermedades de las Aves de Corral/microbiologíaRESUMEN
The human IL-1 family contains 11 genes encoded at three separate loci. Nine, including IL-1R antagonist (IL-1RN), are present at a single locus on chromosome 2, whereas IL-18 and IL-33 lie on chromosomes 11 and 9, respectively. There are currently only two known orthologs in the chicken, IL-1ß and IL-18, which are encoded on chromosomes 22 and 24, respectively. Two novel chicken IL-1 family sequences were identified from expressed sequence tag libraries, representing secretory and intracellular (icIL-1RN) structural variants of the IL-1RN gene, as seen in mammals. Two further putative splice variants (SVs) of both chicken IL-1RN (chIL-1RN) structural variants were also isolated. Alternative splicing of human icIL-1RN gives three different transcripts; there are no known SVs for human secretory IL-1RN. The chicken icIL-1RN SVs differ from those found in human icIL-1RN in terms of the rearrangements involved. In mammals, IL-1RN inhibits IL-1 activity by physically occupying the IL-1 type I receptor. Both full-length structural variants of chIL-1RN exhibited biological activity similar to their mammalian orthologs in a macrophage cell line bioassay. The four SVs, however, were not biologically active. The chicken IL-1 family is more fragmented in the genome than those of mammals, particularly in that the large multigene locus seen in mammals is absent. This suggests differential evolution of the family since the divergence of birds and mammals from a common ancestor, and makes determination of the full repertoire of chicken IL-1 family members more challenging.
Asunto(s)
Proteína Antagonista del Receptor de Interleucina 1/química , Proteína Antagonista del Receptor de Interleucina 1/genética , Empalme Alternativo/inmunología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células COS , Línea Celular , Pollos , Chlorocebus aethiops , Clonación Molecular , ADN Complementario/aislamiento & purificación , Células HEK293 , Humanos , Proteína Antagonista del Receptor de Interleucina 1/fisiología , Mamíferos , Isoformas de Proteínas/química , Isoformas de Proteínas/genéticaRESUMEN
BACKGROUND: Detecting genetic variation is a critical step in elucidating the molecular mechanisms underlying phenotypic diversity. Until recently, such detection has mostly focused on single nucleotide polymorphisms (SNPs) because of the ease in screening complete genomes. Another type of variant, copy number variation (CNV), is emerging as a significant contributor to phenotypic variation in many species. Here we describe a genome-wide CNV study using array comparative genomic hybridization (aCGH) in a wide variety of chicken breeds. RESULTS: We identified 3,154 CNVs, grouped into 1,556 CNV regions (CNVRs). Thirty percent of the CNVs were detected in at least 2 individuals. The average size of the CNVs detected was 46.3 kb with the largest CNV, located on GGAZ, being 4.3 Mb. Approximately 75% of the CNVs are copy number losses relatively to the Red Jungle Fowl reference genome. The genome coverage of CNVRs in this study is 60 Mb, which represents almost 5.4% of the chicken genome. In particular large gene families such as the keratin gene family and the MHC show extensive CNV. CONCLUSIONS: A relative large group of the CNVs are line-specific, several of which were previously shown to be related to the causative mutation for a number of phenotypic variants. The chance that inter-specific CNVs fall into CNVRs detected in chicken is related to the evolutionary distance between the species. Our results provide a valuable resource for the study of genetic and phenotypic variation in this phenotypically diverse species.