Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 32(1): 243-253, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28855274

RESUMEN

Reduced cerebral glucose utilization is found in aged individuals and often is an early sign of neurodegeneration. Here, we show that under glucose deprivation (GD) conditions, decreased expression of presenilin 1 (PS1) results in decreased neuronal survival, whereas increased PS1 increases neuronal survival. Inhibition of γ-secretase also decreases neuronal survival under GD conditions, which suggests the PS1/γ-secretase system protects neurons from GD-induced death. We also show that neuronal levels of the survival protein, phosphoprotein enriched in astrocytes at ∼15 kDa (PEA15), and its mRNA are regulated by PS1/γ-secretase. Furthermore, down-regulation of PEA15 decreases neuronal survival under reduced glucose conditions, whereas exogenous PEA15 increases neuronal survival even in the absence of PS1, which indicates that PEA15 promotes neuronal survival under GD conditions. The absence or reduction of PS1, as well as γ-secretase inhibitors, increases neuronal miR-212, which targets PEA15 mRNA. PS1/γ-secretase activates the transcription factor, cAMP response element-binding protein, regulating miR-212, which targets PEA15 mRNA. Taken together, our data show that under conditions of reduced glucose, the PS1/γ-secretase system decreases neuronal losses by suppressing miR-212 and increasing its target survival factor, PEA15. These observations have implications for mechanisms of neuronal death under conditions of reduced glucose and may provide targets for intervention in neurodegenerative disorders.-Huang, Q., Voloudakis, G., Ren, Y., Yoon, Y., Zhang, E., Kajiwara, Y., Shao, Z., Xuan, Z., Lebedev, D., Georgakopoulos, A., Robakis, N. K. Presenilin1/γ-secretase protects neurons from glucose deprivation-induced death by regulating miR-212 and PEA15.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Glucosa/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Neuronas/metabolismo , Neuronas/patología , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Presenilina-1/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis , Muerte Celular/genética , Muerte Celular/fisiología , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Glucosa/deficiencia , Ratones , Modelos Neurológicos , Presenilina-1/antagonistas & inhibidores , Presenilina-1/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores
2.
Hum Mol Genet ; 25(19): 4315-4327, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27516385

RESUMEN

Recent studies have indicated that innate immune signalling molecules are involved in late-onset Alzheimer's disease (LOAD) risk. Amyloid beta (Aß) accumulates in AD brain, and has been proposed to act as a trigger of innate immune responses. Caspase-4 is an important part of the innate immune response. We recently characterized transgenic mice carrying human CASP4, and observed that the mice manifested profound innate immune responses to lipopolysaccharide (LPS). Since these inflammatory processes are important in the aetiology of AD, we have now analysed the correlation of expression of caspase-4 in human brain with AD risk genes, and studied caspase-4 effects on AD-related phenotypes in APPswe/PS1deltaE9 (APP/PS1) mice. We observed that the expression of caspase-4 was strongly correlated with AD risk genes including TYROBP, TREM2, CR1, PSEN1, MS4A4A and MS4A6A in LOAD brains. Caspase-4 expression was upregulated in CASP4/APP/PS1 mice in a region-specific manner, including hippocampus and prefrontal cortex. In APP/PS1 mice, caspase-4 expression led to impairments in the reversal phase of a Barnes maze task and in hippocampal synaptic plasticity, without affecting soluble or aggregated Aß levels. Caspase-4 was expressed predominantly in microglial cells, and in the presence of CASP4, more microglia were clustered around amyloid plaques. Furthermore, our data indicated that caspase-4 modulates microglial cells in a manner that increases proinflammatory processes. We propose that microglial caspase-4 expression contributes to the cognitive impairments in AD, and that further study of caspase-4 will enhance our understanding of AD pathogenesis and may lead to novel therapeutic targets in AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Caspasas Iniciadoras/genética , Disfunción Cognitiva/genética , Hipocampo/metabolismo , Placa Amiloide/metabolismo , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Caspasas Iniciadoras/biosíntesis , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Hipocampo/patología , Humanos , Ratones , Ratones Transgénicos , Microglía/metabolismo , Microglía/patología , Plasticidad Neuronal/genética , Placa Amiloide/patología , Presenilina-1/genética
3.
Am J Hum Genet ; 93(4): 607-19, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-24094742

RESUMEN

Copy number variation (CNV) is an important determinant of human diversity and plays important roles in susceptibility to disease. Most studies of CNV carried out to date have made use of chromosome microarray and have had a lower size limit for detection of about 30 kilobases (kb). With the emergence of whole-exome sequencing studies, we asked whether such data could be used to reliably call rare exonic CNV in the size range of 1-30 kilobases (kb), making use of the eXome Hidden Markov Model (XHMM) program. By using both transmission information and validation by molecular methods, we confirmed that small CNV encompassing as few as three exons can be reliably called from whole-exome data. We applied this approach to an autism case-control sample (n = 811, mean per-target read depth = 161) and observed a significant increase in the burden of rare (MAF ≤1%) 1-30 kb CNV, 1-30 kb deletions, and 1-10 kb deletions in ASD. CNV in the 1-30 kb range frequently hit just a single gene, and we were therefore able to carry out enrichment and pathway analyses, where we observed enrichment for disruption of genes in cytoskeletal and autophagy pathways in ASD. In summary, our results showed that XHMM provided an effective means to assess small exonic CNV from whole-exome data, indicated that rare 1-30 kb exonic deletions could contribute to risk in up to 7% of individuals with ASD, and implicated a candidate pathway in developmental delay syndromes.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Variaciones en el Número de Copia de ADN , Exoma , Autofagia/genética , Secuencia de Bases , Estudios de Casos y Controles , Niño , Exones , Eliminación de Gen , Predisposición Genética a la Enfermedad , Humanos , Datos de Secuencia Molecular , Análisis de Secuencia de ADN/métodos
4.
FASEB J ; 29(9): 3702-12, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25985800

RESUMEN

Epidermal growth factor receptor (EGFR) plays pivotal roles in cell proliferation, differentiation, and tissue development, while EGFs protect neurons from toxic insults by binding EGFR and stimulating survival signaling. Furthermore, recent evidence implicates this receptor in neurometabolic disorders like Alzheimer disease and aging. Here we show that absence of presenilin 1 (PS1) results in dramatic decrease (>95%) of neuronal EGFR and that PS1-null (PS1(-/-)) brains have reduced amounts of this receptor. PS1(-/-) cortical neurons contain little EGFR and show no epidermal growth factor-induced survival signaling or protection against excitotoxicity, but exogenous EGFR rescues both functions even in absence of PS1. EGFR mRNA is greatly reduced (>95%) in PS1(-/-) neurons, and PS1(-/-) brains contain decreased amounts of this mRNA, although PS1 affects the stability of neither EGFR nor its mRNA. Exogenous PS1 increases neuronal EGFR mRNA, while down-regulation of PS1 decreases this mRNA. These effects are neuron specific, as PS1 affects the EGFR of neither glial nor fibroblast cells. In addition, PS1 controls EGFR through novel mechanisms shared with neither γ-secretase nor PS2. Our data reveal that PS1 functions as a positive transcriptional regulator of neuronal EGFR controlling its expression in a cell-specific manner. Severe downregulation of EGFR may contribute to developmental abnormalities and lethal phenotype found in PS1, but not PS2, null mice. Furthermore, PS1 may affect neuroprotection and Alzheimer disease by controlling survival signaling of neuronal EGFR.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Receptores ErbB/biosíntesis , Regulación de la Expresión Génica , Neuronas/metabolismo , Presenilina-1/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Receptores ErbB/genética , Ratones , Ratones Noqueados , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/patología , Presenilina-1/genética , Transcripción Genética
5.
J Immunol ; 193(1): 335-43, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24879791

RESUMEN

Response to endotoxins is an important part of the organismal reaction to Gram-negative bacteria and plays a critical role in sepsis and septic shock, as well as other conditions such as metabolic endotoxemia. Humans are generally more sensitive to endotoxins when compared with experimental animals such as mice. Inflammatory caspases mediate endotoxin-induced IL-1ß secretion and lethality in mice, and caspase-4 is an inflammatory caspase that is found in the human, and not mouse, genome. To test whether caspase-4 is involved in endotoxin sensitivity, we developed a transgenic mouse expressing human caspase-4 in its genomic context. Caspase-4 transgenic mice exhibited significantly higher endotoxin sensitivity, as measured by enhanced cytokine secretion and lethality following LPS challenge. Using bone marrow-derived macrophages, we then observed that caspase-4 can support activation of caspase-1 and secretion of IL-1ß and IL-18 in response to priming signals (LPS or Pam3CSK4) alone, without the need for second signals to stimulate the assembly of the inflammasome. These findings indicate that the regulation of caspase-1 activity by human caspase-4 could represent a unique mechanism in humans, as compared with laboratory rodents, and may partially explain the higher sensitivity to endotoxins observed in humans. Regulation of the expression, activation, or activity of caspase-4 therefore represents targets for systemic inflammatory response syndrome, sepsis, septic shock, and related disorders.


Asunto(s)
Caspasas Iniciadoras/inmunología , Caspasas/inmunología , Lipopéptidos/toxicidad , Lipopolisacáridos/toxicidad , Macrófagos/inmunología , Animales , Caspasas/genética , Caspasas Iniciadoras/genética , Línea Celular , Inducción Enzimática/efectos de los fármacos , Inducción Enzimática/genética , Inducción Enzimática/inmunología , Humanos , Inflamasomas/genética , Inflamasomas/inmunología , Interleucina-18/genética , Interleucina-18/inmunología , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Ratones , Ratones Noqueados
6.
J Med Chem ; 65(24): 16290-16312, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36469401

RESUMEN

Dual leucine zipper kinase (DLK) and leucine zipper-bearing kinase (LZK) are regulators of neuronal degeneration and axon growth. Therefore, there is a considerable interest in developing DLK/LZK inhibitors for neurodegenerative diseases. Herein, we use ligand- and structure-based drug design approaches for identifying novel amino-pyrazine inhibitors of DLK/LZK. DN-1289 (14), a potent and selective dual DLK/LZK inhibitor, demonstrated excellent in vivo plasma half-life across species and is anticipated to freely penetrate the central nervous system with no brain impairment based on in vivo rodent pharmacokinetic studies and human in vitro transporter data. Proximal target engagement and disease relevant pathway biomarkers were also favorably regulated in an in vivo model of amyotrophic lateral sclerosis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/metabolismo , Leucina Zippers , Quinasas Quinasa Quinasa PAM , Sistema Nervioso Central/metabolismo , Encéfalo/metabolismo , Enfermedades Neurodegenerativas/metabolismo
7.
Sci Rep ; 10(1): 968, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31969655

RESUMEN

Intellectual disability (ID), which presents itself during childhood, belongs to a group of neurodevelopmental disorders (NDDs) that are clinically widely heterogeneous and highly heritable, often being caused by single gene defects. Indeed, NDDs can be attributed to mutations at over 1000 loci, and all type of mutations, ranging from single nucleotide variations (SNVs) to large, complex copy number variations (CNVs), have been reported in patients with ID and other related NDDs. In this study, we recruited seven different recessive NDD families with comorbidities to perform a detailed clinical characterization and a complete genomic analysis that consisted of a combination of high throughput SNP-based genotyping and whole-genome sequencing (WGS). Different disease-associated loci and pathogenic gene mutations were identified in each family, including known (n = 4) and novel (n = 2) mutations in known genes (NAGLU, SLC5A2, POLR3B, VPS13A, SYN1, SPG11), and the identification of a novel disease gene (n = 1; NSL1). Functional analyses were additionally performed in a gene associated with autism-like symptoms and epileptic seizures for further proof of pathogenicity. Lastly, detailed genotype-phenotype correlations were carried out to assist with the diagnosis of prospective families and to determine genomic variation with clinical relevance. We concluded that the combination of linkage analyses and WGS to search for disease genes still remains a fruitful strategy for complex diseases with a variety of mutated genes and heterogeneous phenotypic manifestations, allowing for the identification of novel mutations, genes, and phenotypes, and leading to improvements in both diagnostic strategies and functional characterization of disease mechanisms.


Asunto(s)
Variación Genética , Genotipo , Discapacidad Intelectual/genética , Fenotipo , Variaciones en el Número de Copia de ADN , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Mutación , Linaje , Polimorfismo de Nucleótido Simple
8.
Congenit Anom (Kyoto) ; 49(1): 42-5, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19243418

RESUMEN

Endocrine disruptors are known to have the potential to interfere with reproductive systems. It has been reported that early embryogenesis was affected by estrone in chicks. In the present experiment, the effects of estrone on early embryos during pre-organogenesis were investigated to evaluate the effects and toxicities of endocrine disruptors. Mouse embryos at day 6.5 of gestation were recovered and cultured for 48 h in a medium at a concentration of 10 or 100 ng/mL estrone. After cultivation, the embryos were measured for the diameter of the total conceptus, including both embryo and yolk sac, and head-tail length. The diameters of conceptus in both treated and control groups were not significantly different, but the growth of the conceptus was slightly inhibited in the 10 ng estrone group. The lengths of embryos were significantly decreased in the 10 and 100 ng/mL estrone-treated groups. Thus, estrone affected embryo growth at pre-organogenesis, suggesting that the endocrine disruptor could also have some effects and toxicities on mouse embryogenesis.


Asunto(s)
Embrión de Mamíferos/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/fisiología , Estrógenos/farmacología , Estrona/farmacología , Morfogénesis/efectos de los fármacos , Animales , Técnicas de Cultivo de Embriones , Embrión de Mamíferos/citología , Femenino , Masculino , Ratones , Ratones Endogámicos ICR , Morfogénesis/fisiología
9.
Mol Autism ; 10: 3, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30733854

RESUMEN

Background and aims: Autism spectrum disorder (ASD) is currently estimated to affect more than 1% of the world population. For people with ASD, gastrointestinal (GI) distress is a commonly reported but a poorly understood co-occurring symptom. Here, we investigate the physiological basis for GI distress in ASD by studying gut function in a zebrafish model of Phelan-McDermid syndrome (PMS), a condition caused by mutations in the SHANK3 gene. Methods: To generate a zebrafish model of PMS, we used CRISPR/Cas9 to introduce clinically related C-terminal frameshift mutations in shank3a and shank3b zebrafish paralogues (shank3abΔC). Because PMS is caused by SHANK3 haploinsufficiency, we assessed the digestive tract (DT) structure and function in zebrafish shank3abΔC+/- heterozygotes. Human SHANK3 mRNA was then used to rescue DT phenotypes in larval zebrafish. Results: Significantly slower rates of DT peristaltic contractions (p < 0.001) with correspondingly prolonged passage time (p < 0.004) occurred in shank3abΔC+/- mutants. Rescue injections of mRNA encoding the longest human SHANK3 isoform into shank3abΔC+/- mutants produced larvae with intestinal bulb emptying similar to wild type (WT), but still deficits in posterior intestinal motility. Serotonin-positive enteroendocrine cells (EECs) were significantly reduced in both shank3abΔC+/- and shank3abΔC-/- mutants (p < 0.05) while enteric neuron counts and overall structure of the DT epithelium, including goblet cell number, were unaffected in shank3abΔC+/- larvae. Conclusions: Our data and rescue experiments support mutations in SHANK3 as causal for GI transit and motility abnormalities. Reductions in serotonin-positive EECs and serotonin-filled ENS boutons suggest an endocrine/neural component to this dysmotility. This is the first study to date demonstrating DT dysmotility in a zebrafish single gene mutant model of ASD.


Asunto(s)
Trastorno Autístico/genética , Motilidad Gastrointestinal , Proteínas del Tejido Nervioso/genética , Proteínas de Pez Cebra/genética , Animales , Trastorno Autístico/fisiopatología , Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/metabolismo , Células Enteroendocrinas/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/citología , Intestinos/crecimiento & desarrollo , Intestinos/fisiología , Mutación , Neuronas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Serotonina/metabolismo , Pez Cebra
10.
eNeuro ; 5(3)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30302388

RESUMEN

Phelan-McDermid syndrome (PMS) is a rare genetic disorder in which one copy of the SHANK3 gene is missing or mutated, leading to a global developmental delay, intellectual disability (ID), and autism. Multiple intragenic promoters and alternatively spliced exons are responsible for the formation of numerous isoforms. Many genetically-modified mouse models of PMS have been generated but most disrupt only some of the isoforms. In contrast, the vast majority of known SHANK3 mutations found in patients involve deletions that disrupt all isoforms. Here, we report the production and thorough behavioral characterization of a new mouse model in which all Shank3 isoforms are disrupted. Domains and tasks examined in adults included measures of general health, neurological reflexes, motor abilities, sensory reactivity, social behavior, repetitive behaviors, cognition and behavioral inflexibility, and anxiety. Our mice are more severely affected than previously published models. While the deficits were typically more pronounced in homozygotes, an intermediate phenotype was observed for heterozygotes in many paradigms. As in other Shank3 mouse models, stereotypies, including increased grooming, were observed. Additionally, sensory alterations were detected in both neonatal and adult mice, and motor behavior was strongly altered, especially in the open field and rotarod locomotor tests. While social behaviors measured with the three-chambered social approach and male-female interaction tests were not strongly impacted, Shank3-deficient mice displayed a strong escape behavior and avoidance of inanimate objects in novel object recognition, repetitive novel object contact, marble burying, and nest building tasks, indicating increased novelty-induced anxiety. Similarly, increased freezing was observed during fear conditioning training and amygdala-dependent cued retrieval. Finally, deficits were observed in both initial training and reversal in the Barnes maze and in contextual fear testing, which are memory tasks involving hippocampal-prefrontal circuits. In contrast, working memory in the Y-maze spontaneous alternation test was not altered. This new mouse model of PMS, engineered to most closely represent human mutations, recapitulates core symptoms of PMS providing improvements for both construct and face validity, compared to previous models.


Asunto(s)
Conducta Animal , Trastornos de los Cromosomas/genética , Modelos Animales de Enfermedad , Proteínas del Tejido Nervioso/genética , Animales , Deleción Cromosómica , Cromosomas Humanos Par 22/genética , Femenino , Eliminación de Gen , Masculino , Memoria , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos , Fenotipo , Isoformas de Proteínas/genética , Conducta Social
11.
Acta Neuropathol Commun ; 6(1): 144, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30577786

RESUMEN

GJA1 (connexin43) has been predicted as the top key driver of an astrocyte enriched subnetwork associated with Alzheimer's disease (AD). In this study, we comprehensively examined GJA1 expression across 29 transcriptomic and proteomic datasets from post-mortem AD and normal control brains. We demonstrated that GJA1 was strongly associated with AD amyloid and tau pathologies and cognitive functions. RNA sequencing analysis of Gja1-/- astrocytes validated that Gja1 regulated the subnetwork identified in AD, and many genes involved in Aß metabolism. Astrocytes lacking Gja1 showed reduced Apoe protein levels as well as impaired Aß phagocytosis. Consistent with this, wildtype neurons co-cultured with Gja1-/- astrocytes contained higher levels of Aß species than those with wildtype astrocytes. Moreover, Gja1-/- astrocytes was more neuroprotective under Aß stress. Our results underscore the importance of GJA1 in AD pathogenesis and its potential for further investigation as a promising pharmacological target in AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Conexina 43/metabolismo , Redes Reguladoras de Genes/fisiología , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/farmacología , Animales , Animales Recién Nacidos , Apolipoproteínas E/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Encéfalo/patología , Células Cultivadas , Estudios de Cohortes , Conexina 43/genética , Citocinas/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Proteómica
12.
Nat Med ; 24(1): 50-61, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29176737

RESUMEN

Geographic atrophy is a blinding form of age-related macular degeneration characterized by retinal pigmented epithelium (RPE) death; the RPE also exhibits DICER1 deficiency, resultant accumulation of endogenous Alu-retroelement RNA, and NLRP3-inflammasome activation. How the inflammasome is activated in this untreatable disease is largely unknown. Here we demonstrate that RPE degeneration in human-cell-culture and mouse models is driven by a noncanonical-inflammasome pathway that activates caspase-4 (caspase-11 in mice) and caspase-1, and requires cyclic GMP-AMP synthase (cGAS)-dependent interferon-ß production and gasdermin D-dependent interleukin-18 secretion. Decreased DICER1 levels or Alu-RNA accumulation triggers cytosolic escape of mitochondrial DNA, which engages cGAS. Moreover, caspase-4, gasdermin D, interferon-ß, and cGAS levels were elevated in the RPE in human eyes with geographic atrophy. Collectively, these data highlight an unexpected role of cGAS in responding to mobile-element transcripts, reveal cGAS-driven interferon signaling as a conduit for mitochondrial-damage-induced inflammasome activation, expand the immune-sensing repertoire of cGAS and caspase-4 to noninfectious human disease, and identify new potential targets for treatment of a major cause of blindness.


Asunto(s)
Atrofia Geográfica/enzimología , Inflamasomas/metabolismo , Nucleotidiltransferasas/metabolismo , Animales , ARN Helicasas DEAD-box/genética , Humanos , Interferón Tipo I/metabolismo , Ratones , Epitelio Pigmentado de la Retina/metabolismo , Ribonucleasa III/genética , Transducción de Señal
13.
Genome Med ; 8(1): 104, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27799057

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive cognitive impairment and neurodegeneration. However, despite extensive clinical and genomic studies, the molecular basis of AD development and progression remains elusive. METHODS: To elucidate molecular systems associated with AD, we developed a large scale gene expression dataset from 1053 postmortem brain samples across 19 cortical regions of 125 individuals with a severity spectrum of dementia and neuropathology of AD. We excluded brain specimens that evidenced neuropathology other than that characteristic of AD. For the first time, we performed a pan-cortical brain region genomic analysis, characterizing the gene expression changes associated with a measure of dementia severity and multiple measures of the severity of neuropathological lesions associated with AD (neuritic plaques and neurofibrillary tangles) and constructing region-specific co-expression networks. We rank-ordered 44,692 gene probesets, 1558 co-expressed gene modules and 19 brain regions based upon their association with the disease traits. RESULTS: The neurobiological pathways identified through these analyses included actin cytoskeleton, axon guidance, and nervous system development. Using public human brain single-cell RNA-sequencing data, we computed brain cell type-specific marker genes for human and determined that many of the abnormally expressed gene signatures and network modules were specific to oligodendrocytes, astrocytes, and neurons. Analysis based on disease severity suggested that: many of the gene expression changes, including those of oligodendrocytes, occurred early in the progression of disease, making them potential translational/treatment development targets and unlikely to be mere bystander result of degeneration; several modules were closely linked to cognitive compromise with lesser association with traditional measures of neuropathology. The brain regional analyses identified temporal lobe gyri as sites associated with the greatest and earliest gene expression abnormalities. CONCLUSIONS: This transcriptomic network analysis of 19 brain regions provides a comprehensive assessment of the critical molecular pathways associated with AD pathology and offers new insights into molecular mechanisms underlying selective regional vulnerability to AD at different stages of the progression of cognitive compromise and development of the canonical neuropathological lesions of AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Demencia/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Enfermedad de Alzheimer/patología , Encéfalo/patología , Estudios de Cohortes , Demencia/patología , Regulación de la Expresión Génica , Humanos , Índice de Severidad de la Enfermedad , Transcripción Genética
14.
Cell Host Microbe ; 18(3): 320-32, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26320999

RESUMEN

The inflammatory caspases 1 and 11 are activated in response to different agonists and act independently to induce pyroptosis. In the context of IL-1ß/IL-18 secretion, however, in vitro studies indicate that caspase-11 acts upstream of NLRP3 and caspase-1. By contrast, studying infection in vivo by the cytosol-invasive bacterium Burkholderia thailandensis, we find that caspase-1 activity is required upstream of caspase-11 to control infection. Caspase-1-activated IL-18 induces IFN-γ to prime caspase-11 and rapidly clear B. thailandensis infection. In the absence of IL-18, bacterial burdens persist, eventually triggering other signals that induce IFN-γ. Whereas IFN-γ was essential, endogenous type I interferons were insufficient to prime caspase-11. Although mice transgenic for caspase-4, the human ortholog of caspase-11, cleared B. thailandensis in vivo, they did not strictly require IFN-γ priming. Thus, caspase-1 provides priming signals upstream of caspase-11 but not caspase-4 during murine defense against a cytosol-invasive bacterium.


Asunto(s)
Burkholderia/inmunología , Caspasa 1/metabolismo , Caspasas/metabolismo , Citosol/microbiología , Inflamasomas/metabolismo , Interferón gamma/metabolismo , Interleucina-18/metabolismo , Animales , Caspasas Iniciadoras/metabolismo , Humanos , Ratones , Ratones Transgénicos , Transducción de Señal
15.
Cell Rep ; 11(9): 1400-1413, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-26027926

RESUMEN

Haploinsufficiency of the Shank3 gene, which encodes a scaffolding protein at glutamatergic synapses, is a highly prevalent and penetrant risk factor for autism. Using combined behavioral, electrophysiological, biochemical, imaging, and molecular approaches, we find that Shank3-deficient mice exhibit autism-like social deficits and repetitive behaviors, as well as the significantly diminished NMDA receptor (NMDAR) synaptic function and synaptic distribution in prefrontal cortex. Concomitantly, Shank3-deficient mice have a marked loss of cortical actin filaments, which is associated with the reduced Rac1/PAK activity and increased activity of cofilin, the major actin depolymerizing factor. The social deficits and NMDAR hypofunction are rescued by inhibiting cofilin or activating Rac1 in Shank3-deficient mice and are induced by inhibiting PAK or Rac1 in wild-type mice. These results indicate that the aberrant regulation of synaptic actin filaments and loss of synaptic NMDARs contribute to the manifestation of autism-like phenotypes. Thus, targeting actin regulators provides a strategy for autism treatment.


Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , Trastorno Autístico/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Corteza Prefrontal/fisiopatología , Animales , Trastorno Autístico/genética , Trastorno Autístico/fisiopatología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Neuropéptidos/metabolismo , Técnicas de Placa-Clamp , Receptores de N-Metil-D-Aspartato/metabolismo , Quinasas p21 Activadas/metabolismo , Proteína de Unión al GTP rac1/metabolismo
16.
Mol Autism ; 6: 23, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26045941

RESUMEN

BACKGROUND: SHANK proteins are crucial for the formation and plasticity of excitatory synapses. Although mutations in all three SHANK genes are associated with autism spectrum disorder (ASD), SHANK3 appears to be the major ASD gene with a prevalence of approximately 0.5% for SHANK3 mutations in ASD, with higher rates in individuals with ASD and intellectual disability (ID). Interestingly, the most relevant mutations are typically de novo and often are frameshift or nonsense mutations resulting in a premature stop and a truncation of SHANK3 protein. METHODS: We analyzed three different SHANK3 stop mutations that we identified in individuals with ASD and/or ID, one novel (c.5008A > T) and two that we recently described (c.1527G > A, c.2497delG). The mutations were inserted into the human SHANK3a sequence and analyzed for effects on subcellular localization and neuronal morphology when overexpressed in rat primary hippocampal neurons. RESULTS: Clinically, all three individuals harboring these mutations had global developmental delays and ID. In our in vitro assay, c.1527G > A and c.2497delG both result in proteins that lack most of the SHANK3a C-terminus and accumulate in the nucleus of transfected cells. Cells expressing these mutants exhibit converging morphological phenotypes including reduced complexity of the dendritic tree, less spines, and less excitatory, but not inhibitory synapses. In contrast, the truncated protein based on c.5008A > T, which lacks only a short part of the sterile alpha motif (SAM) domain in the very SHANK3a C-terminus, does not accumulate in the nucleus and has minor effects on neuronal morphology. CONCLUSIONS: In spite of the prevalence of SHANK3 disruptions in ASD and ID, only a few human mutations have been functionally characterized; here we characterize three additional mutations. Considering the transcriptional and functional complexity of SHANK3 in healthy neurons, we propose that any heterozygous stop mutation in SHANK3 will lead to a dysequilibrium of SHANK3 isoform expression and alterations in the stoichiometry of SHANK3 protein complexes, resulting in a distinct perturbation of neuronal morphology. This could explain why the clinical phenotype in all three individuals included in this study remains quite severe - regardless of whether there are disruptions in one or more SHANK3 interaction domains.

17.
Dev Growth Differ ; 32(3): 275-282, 1990 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37281070

RESUMEN

Chimaeric mice were produced by introducing dissociated embryonic cells of C57BL/6N mice into the embryos of Jcl: ICR albino mice at mid-gestation in utero. The patterns and the existence of pigmented areas were investigated over the long term. The pigmentation of the chimaeras was observed in several locational patterns; mainly in the head and the breast, rarely in the tail, the abdomen, the anterior and posterior trunk. During long-term observation, the pigmentation became faint in 6 of 7 chimaeras and completely disappeared in 2 of 7 chimaeras 6 months after birth, as was true in our previous observation in rat/mouse chimaeras. The reason for this discoloration, however, is unknown at present; melanocytes derived from donor cells may have failed to function or have been eliminated. To examine the entry routes of injected cells into the embryos, pollen particles, similar to embronic cells in size, were injected as a donor material. The particles were localized mainly on the mid-dorsal line in the head, and breast near fore-limb buds 48 hr after injection. These patterns were similar to those of areas where the pigmentation were observed in the chimaeras. The results suggested that the cells were passively incorporated into embryos on the dorsal midline and the abdomen through the neural tube and somatopleure closure, respectively.

18.
PLoS One ; 8(8): e70376, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23990902

RESUMEN

Obsessive compulsive disorder (OCD) is a syndrome characterized by recurrent and intrusive thoughts and ritualistic behaviors or mental acts that a person feels compelled to perform. Twin studies, family studies, and segregation analyses provide compelling evidence that OCD has a strong genetic component. The SLITRK1 gene encodes a developmentally regulated stimulator of neurite outgrowth and previous studies have implicated rare variants in this gene in disorders in the OC spectrum, specifically Tourette syndrome (TS) and trichotillomania (TTM). The objective of the current study was to evaluate rare genetic variation in SLITRK1 in risk for OCD and to functionally characterize associated coding variants. We sequenced SLITRK1 coding exons in 381 individuals with OCD as well as in 356 control samples and identified three novel variants in seven individuals. We found that the combined mutation load in OCD relative to controls was significant (p = 0.036). We identified a missense N400I change in an individual with OCD, which was not found in more than 1000 control samples (P<0.05). In addition, we showed the the N400I variant failed to enhance neurite outgrowth in primary neuronal cultures, in contrast to wildtype SLITRK1, which enhanced neurite outgrowth in this assay. These important functional differences in the N400I variant, as compared to the wildtype SLITRK1 sequence, may contribute to OCD and OC spectrum symptoms. A synonymous L63L change identified in an individual with OCD and an additional missense change, T418S, was found in four individuals with OCD and in one individual without an OCD spectrum disorder. Examination of additional samples will help assess the role of rare SLITRK1 variation in OCD and in related psychiatric illness.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Trastorno Obsesivo Compulsivo/genética , Adulto , Secuencia de Aminoácidos , Animales , Encéfalo/embriología , Estudios de Casos y Controles , Niño , Femenino , Variación Genética , Humanos , Masculino , Trastornos Mentales/genética , Ratones , Persona de Mediana Edad , Datos de Secuencia Molecular , Mutación , Mutación Missense , Neuritas/metabolismo , Fenotipo , Homología de Secuencia de Aminoácido , Síndrome de Tourette/genética
19.
Brain Res ; 1380: 98-105, 2011 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-21062623

RESUMEN

There is strong evidence for rare, highly penetrant genetic variants playing an etiological role in multiple neurodevelopmental disabilities, including autism spectrum disorders. The rate of discovery of such rare variants is increasing with the advent of larger sample collections, chromosome microarray analyses, and high-throughput sequencing. As the variants that are being discovered can be highly penetrant, they lead immediately to model systems with construct validity, critical for understanding the underlying neurobiology of these conditions, which in turn can provide leads for novel therapeutic targets. Moreover, these discoveries can benefit families with information about recurrence risk, resolve concerns about etiology, provide information about associated medical issues, and engender directed advocacy for specific genetic conditions. For these reasons, diagnostic laboratories are taking advantage of research data as they are produced. In the current report, we present our molecular analysis of a child with a purported disruptive mutation in SHANK3 identified by a commercial genetic testing laboratory and we provide evidence that this was not an etiological variant. The variant was a 1-bp insertion in exon 11 of the RefSeq gene, which we then determined was inherited from a healthy mother and found in ~1% of controls. Since the variant would be predicted to disrupt the reference gene, and the penetrance of SHANK3 mutations is very high, we did follow up molecular and bioinformatic analyses and concluded that the presumptive exon containing the variant is not likely to be present in most or all SHANK3 transcripts. The results highlight difficulties that can arise with rapid translation of research findings to clinical practice. Researchers are in a unique position to generate resources with collated and curated information that can inform research, genetic testing, clinicians, and families about the best practices as pertains to rare genetic variants in neurodevelopmental disabilities. Of immediate importance would be a well-curated database of gene variation identified in large numbers of typically developing individuals and in individuals affected with neurodevelopmental disabilities. Such a database would reduce false-positive results in clinical settings, would be helpful in structure-function analyses, and would direct translational research to pathways most likely to benefit families.


Asunto(s)
Trastorno Autístico/diagnóstico , Trastorno Autístico/genética , Proteínas Portadoras/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Mutación/genética , Animales , Trastorno Autístico/fisiopatología , Niño , Eliminación de Gen , Humanos , Masculino , Proteínas del Tejido Nervioso , Transcripción Genética/genética
20.
Mol Neurodegener ; 5: 1, 2010 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-20205790

RESUMEN

BACKGROUND: The low-density lipoprotein receptor related protein 1 (LRP1) has been implicated in Alzheimer's disease (AD) but its signalling has not been fully evaluated. There is good evidence that the cytoplasmic domain of LRP1 is involved in protein-protein interactions, important in the cell biology of LRP1. RESULTS: We carried out three yeast two-hybrid screens to identify proteins that interact with the cytoplasmic domain of LRP1. The screens included both conventional screens as well as a novel, split-ubiquitin-based screen in which an LRP1 construct was expressed and screened as a transmembrane protein. The split-ubiquitin screen was validated in a screen using full-length amyloid protein precursor (APP), which successfully identified FE65 and FE65L2, as well as novel interactors (Rab3a, Napg, and ubiquitin b). Using both a conventional screen as well as the split-ubiquitin screen, we identified NYGGF4 as a novel LRP1 interactor. The interaction between LRP1 and NYGGF4 was validated using two-hybrid assays, coprecipitation and colocalization in mammalian cells. Mutation analysis demonstrated a specific interaction of NYGGF4 with an NPXY motif that required an intact tyrosine residue. Interestingly, while we confirmed that other LRP1 interactors we identified, including JIP1B and EB-1, were also able to bind to APP, NYGGF4 was unique in that it showed specific binding with LRP1. Expression of NYGGF4 decreased significantly in patients with AD as compared to age-matched controls, and showed decreasing expression with AD disease progression. Examination of Nyggf4 expression in mice with different alleles of the human APOE4 gene showed significant differences in Nyggf4 expression. CONCLUSIONS: These results implicate NYGGF4 as a novel and specific interactor of LRP1. Decreased expression of LRP1 and NYGGF4 over disease, evident with the presence of even moderate numbers of neuritic plaques, suggests that LRP1-NYGGF4 is a system altered early in disease. Genetic and functional studies have implicated both LRP1 and NYGGF4 in obesity and cardiovascular disease and the physical association of these proteins may reflect a common mechanism. This is particularly interesting in light of the dual role of ApoE in both cardiovascular risk and AD. The results support further studies on the functional relationship between NYGGF4 and LRP1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA