RESUMEN
Subjecting a physical system to extreme conditions is one of the means often used to obtain a better understanding and deeper insight into its organization and structure. In the case of the atomic nucleus, one such approach is to investigate isotopes that have very different neutron-to-proton (N/Z) ratios than in stable nuclei. Light, neutron-rich isotopes exhibit the most asymmetric N/Z ratios and those lying beyond the limits of binding, which undergo spontaneous neutron emission and exist only as very short-lived resonances (about 10-21 s), provide the most stringent tests of modern nuclear-structure theories. Here we report on the first observation of 28O and 27O through their decay into 24O and four and three neutrons, respectively. The 28O nucleus is of particular interest as, with the Z = 8 and N = 20 magic numbers1,2, it is expected in the standard shell-model picture of nuclear structure to be one of a relatively small number of so-called 'doubly magic' nuclei. Both 27O and 28O were found to exist as narrow, low-lying resonances and their decay energies are compared here to the results of sophisticated theoretical modelling, including a large-scale shell-model calculation and a newly developed statistical approach. In both cases, the underlying nuclear interactions were derived from effective field theories of quantum chromodynamics. Finally, it is shown that the cross-section for the production of 28O from a 29F beam is consistent with it not exhibiting a closed N = 20 shell structure.
RESUMEN
A long-standing question in nuclear physics is whether chargeless nuclear systems can exist. To our knowledge, only neutron stars represent near-pure neutron systems, where neutrons are squeezed together by the gravitational force to very high densities. The experimental search for isolated multi-neutron systems has been an ongoing quest for several decades1, with a particular focus on the four-neutron system called the tetraneutron, resulting in only a few indications of its existence so far2-4, leaving the tetraneutron an elusive nuclear system for six decades. Here we report on the observation of a resonance-like structure near threshold in the four-neutron system that is consistent with a quasi-bound tetraneutron state existing for a very short time. The measured energy and width of this state provide a key benchmark for our understanding of the nuclear force. The use of an experimental approach based on a knockout reaction at large momentum transfer with a radioactive high-energy 8He beam was key.
RESUMEN
The neutron-rich unbound fluorine isotope ^{30}F_{21} has been observed for the first time by measuring its neutron decay at the SAMURAI spectrometer (RIBF, RIKEN) in the quasifree proton knockout reaction of ^{31}Ne nuclei at 235 MeV/nucleon. The mass and thus one-neutron-separation energy of ^{30}F has been determined to be S_{n}=-472±58(stat)±33(sys) keV from the measurement of its invariant-mass spectrum. The absence of a sharp drop in S_{n}(^{30}F) shows that the "magic" N=20 shell gap is not restored close to ^{28}O, which is in agreement with our shell-model calculations that predict a near degeneracy between the neutron d and fp orbitals, with the 1p_{3/2} and 1p_{1/2} orbitals becoming more bound than the 0f_{7/2} one. This degeneracy and reordering of orbitals has two potential consequences: ^{28}O behaves like a strongly superfluid nucleus with neutron pairs scattering across shells, and both ^{29,31}F appear to be good two-neutron halo-nucleus candidates.
RESUMEN
Detailed spectroscopy of the neutron-unbound nucleus ^{28}F has been performed for the first time following proton/neutron removal from ^{29}Ne/^{29}F beams at energies around 230 MeV/nucleon. The invariant-mass spectra were reconstructed for both the ^{27}F^{(*)}+n and ^{26}F^{(*)}+2n coincidences and revealed a series of well-defined resonances. A near-threshold state was observed in both reactions and is identified as the ^{28}F ground state, with S_{n}(^{28}F)=-199(6) keV, while analysis of the 2n decay channel allowed a considerably improved S_{n}(^{27}F)=1620(60) keV to be deduced. Comparison with shell-model predictions and eikonal-model reaction calculations have allowed spin-parity assignments to be proposed for some of the lower-lying levels of ^{28}F. Importantly, in the case of the ground state, the reconstructed ^{27}F+n momentum distribution following neutron removal from ^{29}F indicates that it arises mainly from the 1p_{3/2} neutron intruder configuration. This demonstrates that the island of inversion around N=20 includes ^{28}F, and most probably ^{29}F, and suggests that ^{28}O is not doubly magic.
RESUMEN
Spectroscopic factors of neutron-hole and proton-hole states in ^{131}Sn and ^{131}In, respectively, were measured using one-nucleon removal reactions from doubly magic ^{132}Sn at relativistic energies. For ^{131}In, a 2910(50)-keV γ ray was observed for the first time and tentatively assigned to a decay from a 5/2^{-} state at 3275(50) keV to the known 1/2^{-} level at 365 keV. The spectroscopic factors determined for this new excited state and three other single-hole states provide first evidence for a strong fragmentation of single-hole strength in ^{131}Sn and ^{131}In. The experimental results are compared to theoretical calculations based on the relativistic particle-vibration coupling model and to experimental information for single-hole states in the stable doubly magic nucleus ^{208}Pb.
RESUMEN
Excitation spectra of ^{11}C are measured in the ^{12}C(p,d) reaction near the η^{'} emission threshold. A proton beam extracted from the synchrotron SIS-18 at GSI with an incident energy of 2.5 GeV impinges on a carbon target. The momenta of deuterons emitted at 0° are precisely measured with the fragment separator (FRS) operated as a spectrometer. In contrast to theoretical predictions on the possible existence of deeply bound η^{'}-mesic states in carbon nuclei, no distinct structures are observed associated with the formation of bound states. The spectra are analyzed to set stringent constraints on the formation cross section and on the hitherto barely known η^{'}-nucleus interaction.
RESUMEN
The isoscalar monopole response has been measured in the unstable nucleus (68)Ni using inelastic alpha scattering at 50A MeV in inverse kinematics with the active target MAYA at GANIL. The isoscalar giant monopole resonance (ISGMR) centroid was determined to be 21.1 ± 1.9 MeV and indications for a soft monopole mode are provided for the first time at 12.9 ± 1.0 MeV. Analysis of the corresponding angular distributions using distorted-wave-born approximation with random-phase approximation transition densities indicates that the L = 0 multipolarity dominates the cross section for the ISGMR and significantly contributes to the low-energy mode. The L=0 part of this low-energy mode, the soft monopole mode, is dominated by neutron excitations. This demonstrates the relevance of inelastic alpha scattering in inverse kinematics in order to probe both the ISGMR and isoscalar soft modes in neutron-rich nuclei.
RESUMEN
Recent experimental results in three-body systems have unambiguously shown that calculations based only on nucleon-nucleon forces fail to accurately describe many experimental observables and one needs to include effects which are beyond the realm of the two-body potentials. This conclusion owes its significance to the fact that experiments and calculations can both be performed with high accuracy. In this review, both theoretical and experimental achievements of the past decade will be underlined. Selected results will be presented. The discussion on the effects of the three-nucleon forces is, however, limited to the hadronic sector. It will be shown that despite the major successes in describing these seemingly simple systems, there are still clear discrepancies between data and the state-of-the-art calculations.
RESUMEN
New vector analyzing-power data on p-->+d elastic scattering at E(p) = 150 and 190 MeV have been measured. These are presented together with existing data and with recent d-->+p vector and tensor analyzing power data at E(d) = 270 MeV. The strong negative extremum of both vector analyzing powers A(p)(y) and A(d)(y) at straight theta(c.m.) approximately 80 degrees -120 degrees is underestimated by Faddeev calculations using modern NN forces. Inclusion of the Tucson-Melbourne 3N force shifts the minima upwards, but with conflicting results for A(p)(y), and leading to a good description for A(d)(y). An A(p)(y) puzzle, previously thought to exist at energies E(N)=30 MeV only, appears to exist also at intermediate energies.
RESUMEN
Photons originating from coherent bremsstrahlung have been measured over a large dynamic range for the reaction of 200 MeV alpha particles with protons. At low photon energies the bremsstrahlung spectrum exhibits the classical behavior with an approximate 1/E(gamma) shape. At higher photon energies there is a pronounced contribution from capture into the unbound ground state and first excited state of 5Li. These results allow one, for the first time, to test theoretical models for a consistent description of bremsstrahlung and radiative capture in a complex system. Calculations predict both features qualitatively but fail to account for their relative importance.