Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Physiol ; 238(1): 82-93, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36409755

RESUMEN

Acute kidney injury (AKI) and chronic kidney disease (CKD) are global health concerns with increasing rates in morbidity and mortality. Transition from AKI-to-CKD is common and requires awareness in the management of AKI survivors. AKI-to-CKD transition is a main risk factor for the development of cardiovascular disease and progression to end-stage kidney disease. The mechanisms driving AKI-to-CKD transition are being explored to identify potential molecular and cellular targets for renoprotective drug interventions. Endoplasmic reticulum (ER) stress and autophagy are involved in the process of AKI-to-CKD transition. Excessive ER stress results in the persistent activation of unfolded protein response, which is an underneath cause of kidney cell death. Moreover, ER stress modulates autophagy and vice-versa. Autophagy is a degradation defensive mechanism protecting cells from malfunction. However, the underlying pathological mechanism involved in this interplay in the context of AKI-to-CKD transition is still unclear. In this review, we discuss the crosstalk between ER stress and autophagy in AKI, AKI-to-CKD transition, and CKD progression. In addition, we explore possible therapeutic targets that can regulate ER stress and autophagy to prevent AKI-to-CKD transition to improve the long-term prognosis of AKI survivors.


Asunto(s)
Lesión Renal Aguda , Autofagia , Estrés del Retículo Endoplásmico , Insuficiencia Renal Crónica , Humanos , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Progresión de la Enfermedad , Riñón/patología , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo
2.
J Cell Physiol ; 238(8): 1716-1731, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37357431

RESUMEN

Kidney diseases are serious health problems affecting >800 million individuals worldwide. The high number of affected individuals and the severe consequences of kidney dysfunction demand an intensified effort toward more effective prevention and treatment. The pathophysiology of kidney diseases is complex and comprises diverse organelle dysfunctions including mitochondria and endoplasmic reticulum (ER). The recent findings prove interactions between the ER membrane and nearly all cell compartments and give new insights into molecular events involved in cellular mechanisms in health and disease. Interactions between the ER and mitochondrial membranes, known as the mitochondria-ER contacts regulate kidney physiology by interacting with each other via membrane contact sites (MCS). ER controls mitochondrial dynamics through ER stress sensor proteins or by direct communication via mitochondria-associated ER membrane to activate signaling pathways such as apoptosis, calcium transport, and autophagy. More importantly, these organelle dynamics are found to be regulated by several epigenetic mechanisms such as DNA methylation, histone modifications, and noncoding RNAs and can be a potential therapeutic target against kidney diseases. However, a thorough understanding of the role of epigenetic regulation of organelle dynamics and their functions is not well understood. Therefore, this review will unveil the role of epigenetic mechanisms in regulating organelle dynamics during various types of kidney diseases. Moreover, we will also shed light on different stress origins in organelles leading to kidney disease. Henceforth, by understanding this we can target epigenetic mechanisms to maintain/control organelle dynamics and serve them as a novel therapeutic approach against kidney diseases.


Asunto(s)
Enfermedades Renales , Dinámicas Mitocondriales , Humanos , Epigénesis Genética/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Estrés del Retículo Endoplásmico/genética
3.
Mol Cell Biochem ; 478(9): 1987-1998, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36586092

RESUMEN

Kidney disease is the 6th fastest-growing cause of death and a serious global health concern that urges effective therapeutic options. The inflammatory response is an initial reaction from immune and parenchymal cells in kidney diseases. Toll-like receptors (TLR) 2 and 4 are highly expressed by various kidney cells and respond to 'signaling danger' proteins, such as high mobility group box binding protein 1 (HMGB1) and prompt the progression of kidney disease by releasing inflammatory mediators. Burgeoning reports suggest that both SGLT2 and ER stress elevates TLR2/4 signaling via different axis. Moreover, SGLT2 signaling aggravates inflammation under the disease condition by promoting the NLR family pyrin domain-containing three inflammasomes and ER stress. Intriguingly, TLR2/4 downstream adaptors activate ER stress regulators. The above-discussed interactions imply that TLR2/4 does more than immune response during kidney disease. Here, we discuss in detail evidence of the roles and regulation of TLR2/4 in the context of a relationship between ER stress and SGLT2. Also, we highlighted different preclinical studies of SGLT2 inhibitors against TLR2/4 signaling in various kidney diseases. Moreover, we discuss the observational and interventional evidence about the relation between TLR2/4, ER stress, and SGLT2, which may represent the TLR2/4 as a potential therapeutic target for kidney disease.


Asunto(s)
Enfermedades Renales , Receptor Toll-Like 2 , Humanos , Receptor Toll-Like 2/metabolismo , Transportador 2 de Sodio-Glucosa , Glucosa , Sodio
4.
Nephrol Dial Transplant ; 38(4): 819-825, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-34850136

RESUMEN

Klotho is a transmembrane anti-ageing protein that exists in three forms, i.e. α-Klotho, ß-Klotho and γ-Klotho, with distinct organ-specific expression and functions in the body. Here we focus on α-Klotho (hereafter Klotho), abundantly expressed by the distal and proximal convoluted tubules of the kidney. A significant decline in systemic and renal Klotho levels is a new hallmark for kidney disease progression. Emerging research portrays Klotho as a promising diagnostic and therapeutic target for diabetic and non-diabetic kidney disease. Even so, the underlying mechanisms of Klotho regulation and the strategies to restore its systemic and renal levels are still lacking. Angiotensin-converting enzyme inhibitors and/or angiotensin receptor blockers are the current standard of care for kidney diseases, but the molecular mechanisms for their nephroprotective action are still ambiguous. Moreover, endoplasmic reticulum (ER) stress also plays a crucial role in kidney disease progression. Few studies have claimed that the renin-angiotensin-aldosterone system (RAAS) has a direct relation with ER stress generation and vice versa in kidney disease. Interestingly, RAAS and ER stress modulation are associated with Klotho regulation in kidney disease. Here we focus on how the RAAS and ER stress connect with Klotho regulation in kidney disease. We also discuss Klotho and ER stress in an alliance with the concept of haemodynamic and metabolic overload in kidney disease. In addition, we highlight novel approaches to implement Klotho as a therapeutic target via RAAS and ER stress modulation for the treatment of diabetic and non-diabetic kidney diseases.


Asunto(s)
Enfermedades Renales , Sistema Renina-Angiotensina , Humanos , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Progresión de la Enfermedad , Estrés del Retículo Endoplásmico , Enfermedades Renales/tratamiento farmacológico , Sistema Renina-Angiotensina/fisiología , Proteínas Klotho/metabolismo
5.
Can J Physiol Pharmacol ; 100(3): 234-239, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34587465

RESUMEN

Persistent hyperglycemia in type 1 diabetes triggers numerous signaling pathways, which may prove deleterious to the endothelium. As hyperglycemia damages the endothelial layer via multiple signaling pathways, including enhanced oxidative stress, downregulation of angiotensin-converting enzyme 2 signaling, and exacerbation of endoplasmic reticulum (ER) stress, it becomes difficult to prevent injury using monotherapy. Thus, the present study was conceived to evaluate the combined effect of ER stress inhibition along with angiotensin-converting enzyme 2 activation, two major contributors to hyperglycemia-induced endothelial dysfunction, in preventing endothelial dysfunction associated with type 1 diabetes. Streptozotocin-induced diabetic animals were treated with either diminazene aceturate (5 mg·kg-1 per day, p.o.) or tauroursodeoxycholic acid, sodium salt (200 mg·kg-1 per day i.p.), or both for 4 weeks. Endothelial dysfunction was evaluated using vasoreactivity assay, where acetylcholine-induced relaxation was assessed in phenylephrine pre-contracted rings. Combination therapy significantly improved vascular relaxation when compared with diabetic control as well as monotherapy. Restoration of nitrite levels along with prevention of collagen led to improved vasodilatation. Moreover, there was an overall reduction in aortic oxidative stress. We conclude that by simultaneously inhibiting ER stress and activating angiotensin-converting enzyme 2 deleterious effects of hyperglycemia on endothelium were significantly alleviated. This could serve as a novel strategy for the prevention of endothelial dysfunction.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diminazeno/análogos & derivados , Estrés del Retículo Endoplásmico/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Ácido Tauroquenodesoxicólico/administración & dosificación , Animales , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1/etiología , Diabetes Mellitus Tipo 1/fisiopatología , Diminazeno/administración & dosificación , Diminazeno/farmacología , Quimioterapia Combinada , Endotelio Vascular/fisiopatología , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas Wistar , Estreptozocina , Ácido Tauroquenodesoxicólico/farmacología
6.
Biochem Biophys Res Commun ; 528(1): 14-20, 2020 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-32448511

RESUMEN

SET domain with lysine methyltransferase 7/9 (Set7/9), a histone lysine methyltransferase (HMT), recently suggested to exert a critical role among kidney disorders, whereas its role in diabetes associated IRI co-morbidity remains complete elusive. The present study aimed to understand the role of SET7/9 and histone methylation in regulation of inflammatory signaling under IRI in diabetes mellitus and non-diabetic rats. Our results demonstrated that IRI caused renal dysfunction via increased blood urea nitrogen (BUN) levels in ND and DM rats. The NF-κB mediated inflammatory cascade like increased p-NF-κB, reduced IκBα levels followed by enhanced leukocyte infiltration as shown by increased MCP-1 expressions. IRI results in increased histone H3 methylation at lysine 4 and 36 (H3K4Me2, H3K36Me2), and decreased histone H3 methylation at lysine 9. Additionally, IRI increased the protein and mRNA expression of H3K4Me2 specific histone methyltransferase-SET7/9 in DM and ND rats. The abovementioned results remain prominent in DM rats compared to ND rats followed by IRI. Further, treatment with a novel SET7/9 inhibitor; cyproheptadine, significantly improved renal functioning via reducing the BUN levels in ND and DM rats. Hence, this study demonstrated the role of SET7/9 in mediating active transcription via H3K4Me2, ultimately regulated the NFκB-mediated inflammatory cascade. Therefore, SET7/9 can be explored as novel target for drug development against IRI under DM and ND conditions.


Asunto(s)
Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Experimental/patología , Progresión de la Enfermedad , N-Metiltransferasa de Histona-Lisina/metabolismo , Isquemia/enzimología , Isquemia/patología , Riñón/patología , Animales , Biomarcadores/metabolismo , Ciproheptadina/farmacología , Ciproheptadina/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/fisiopatología , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Hiperglucemia/patología , Inflamación/patología , Isquemia/tratamiento farmacológico , Isquemia/fisiopatología , Riñón/enzimología , Riñón/fisiopatología , Túbulos Renales Proximales/enzimología , Túbulos Renales Proximales/patología , Túbulos Renales Proximales/fisiopatología , Masculino , Metilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Wistar
7.
J Pharm Pharmacol ; 76(3): 201-212, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38243397

RESUMEN

OBJECTIVES: Phloretin is ubiquitous in apples (Malus domestica) and other fruits and has potential antidiabetic properties. Considering the preclinical potential of phloretin, its transition to clinical observations has unintentionally been neglected, particularly within the diabetic population. Furthermore, a comprehensive understanding of its pharmacokinetics remains elusive. This review seeks to offer valuable insights into phloretin's physical properties, pharmacokinetics, and pharmacodynamics, aiming to unveil opportunities for additional research on its therapeutic potential in the context of diabetes. KEY FINDINGS: All pharmacokinetic reports of phloretin confirm that the utilization of phloretin gets enhanced during diabetic conditions. Phloretin targets pathomechanisms such as glucose transporter 4 (GLUT4) and peroxisome proliferator's activity-activated receptor-γ (PPAR-γ) to decrease insulin resistance in diabetic conditions. Moreover, phloretin targets inflammatory, oxidative, and apoptotic signaling to minimize the progression of diabetes-associated macro- and microvascular complications. SUMMARY: The pleiotropic antidiabetic action of phloretin is mainly dependent on its pharmacokinetics. Nevertheless, further investigation into the altered pharmacokinetics of phloretin during diabetic conditions is essential. Additionally, the results derived from clinical studies utilized apples, apple extract, and supplements containing phloretin. Greater emphasis should be placed on future clinical studies to assess the potential of phloretin as a standalone compound.


Asunto(s)
Diabetes Mellitus , Resistencia a la Insulina , Humanos , Floretina/farmacología , Floretina/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Transducción de Señal
8.
Eur J Pharmacol ; 942: 175528, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36690052

RESUMEN

The bile acid tauroursodeoxycholic acid (TUDCA) is of natural origin and is used in traditional Chinese medicine for centuries. Earlier its use was limited to biliary disorders but owing to its pleiotropic effects dietary TUDCA supplementation is under clinical trials for diseases including type 1 and 2 diabetic complications. The current study aims to evaluate the potential and underlying molecular mechanism of the TUDCA as a monotherapy and as an add-on therapy to telmisartan, an angiotensin II type 1 receptor (AT1R) blocker against diabetic kidney disease (DKD). We employed both in-vitro and in-vivo approaches where NRK-52E cells were incubated with high glucose, and DKD was induced in Wistar rats using streptozotocin (55 mg/kg, i.p.). After 4 weeks, animals were administered with TUDCA (250 mg/kg, i.p.), telmisartan (10 mg/kg, p.o.), and their combination for 4 weeks. Plasma was collected for the biochemical estimation and kidneys were used for immunoblotting, PCR, and histopathological analysis. Similarly, for in-vitro experiments, cells were exposed to 1000 µM of TUDCA and 10 µM of telmisartan, and their combination, followed by cell lysate collection and immunoblotting analysis. We observed that the addition of TUDCA to conventional telmisartan treatment was more effective in restoring the renal function decline and suppressing the apoptotic and fibrotic signaling as compared to monotherapies of AT1R blocker and ER stress inhibitor. The results implicate the utility of traditionally used TUDCA as a potential renoprotective compound. Since, both TUDCA and telmisartan are approved for clinical usage, thus concomitant administration of them could be a novel therapeutic strategy against DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ratas , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Telmisartán/farmacología , Telmisartán/uso terapéutico , Estreptozocina , Ratas Wistar , Ácido Tauroquenodesoxicólico/farmacología , Ácido Tauroquenodesoxicólico/uso terapéutico , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico
9.
Front Pharmacol ; 14: 1053814, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36843922

RESUMEN

Antiviral drugs such as Remdesivir (Veklury), Nirmatrelvir with Ritonavir (Paxlovid), Azvudine, and Molnupiravir (Lagevrio) can reduce the risk for severe and fatal Coronavirus Disease (COVID)-19. Although chronic kidney disease is a highly prevalent risk factor for severe and fatal COVID-19, most clinical trials with these drugs excluded patients with impaired kidney function. Advanced CKD is associated with a state of secondary immunodeficiency (SIDKD), which increases the susceptibility to severe COVID-19, COVID-19 complications, and the risk of hospitalization and mortality among COVID-19 patients. The risk to develop COVID-19 related acute kidney injury is higher in patients with precedent CKD. Selecting appropriate therapies for COVID-19 patients with impaired kidney function is a challenge for healthcare professionals. Here, we discuss the pharmacokinetics and pharmacodynamics of COVID-19-related antiviral drugs with a focus on their potential use and dosing in COVID-19 patients with different stages of CKD. Additionally, we describe the adverse effects and precautions to be taken into account when using these antivirals in COVID-19 patients with CKD. Lastly, we also discuss about the use of monoclonal antibodies in COVID-19 patients with kidney disease and related complications.

10.
Curr Diabetes Rev ; 19(8): e160822207546, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35975848

RESUMEN

Type 2 diabetes mellitus (T2DM) is a set of metabolic disorders specified by hyperglycemia as a result of abnormalities in insulin secretion or sensitivity. Chronic kidney disease (CKD) and cardiovascular disease (CVD) are the widespread co-morbidities of T2DM and share risk factors for onset and progression. Despite numerous mono- and combination therapies exist, the progression of diabetes complications remains a global health concern. Treatment options for diabetic- CKD and CVD include drugs targeting hyperglycemia, hypertension, albuminuria, hyperlipidemia and the renin-angiotensin aldosterone system (RAAS). The sodium-glucose co-transporter 2 channel (SGLT2) is abundantly present in proximal tubules of the kidney and its capacity to recover glucose and sodium from the glomerular filtrate limits urinary glucose and sodium excretion. SGLT2 inhibitors (SGLT2i) reduce sodium and glucose reabsorption in the proximal and thus increase urinary glucose excretion in T2DM. SGLT2i monotherapy can improve but dual SGLT2/RAAS inhibition or SGLT2i along with other classes of drugs are more effective in protecting the kidneys and the cardiovascular system in patients with and without diabetes. Combinations such as empagliflozin and linagliptin, ertugliflozin and metolazone, dapagliflozin and sacubitril- valsartan and many more show promising results. Here, we have reviewed the ongoing and completed clinical trials, addressed current theories, and discussed necessary future research to explain the possible risks and benefits of using an SGLT2i alone and in combination with existing antidiabetic drugs and drugs acting on the cardiovascular system.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Hiperglucemia , Insuficiencia Renal Crónica , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Transportador 2 de Sodio-Glucosa/metabolismo , Hipoglucemiantes/efectos adversos , Glucosa/metabolismo , Hiperglucemia/metabolismo , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/tratamiento farmacológico , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/prevención & control , Sodio
11.
Food Funct ; 14(11): 5391-5403, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37218423

RESUMEN

Toll-like receptor-4 (TLR4) and sodium-glucose co-transporter 2 (SGLT2) signaling is involved in the pathogenesis of diabetes-associated kidney diseases. The purpose of this study was to explore the role and effect of phloretin, a TLR4 inhibitor, as an adjuvant therapy to empagliflozin, an SGLT2 inhibitor, in ischemic acute kidney injury (AKI) under diabetic conditions. To achieve this, firstly we induced type 1 diabetes using streptozotocin (55 mg per kg per intraperitoneally (i.p.)) followed by performing bilateral ischemia-reperfusion kidney injury to induce AKI in male Wistar rats. Treatment with phloretin (50 and 100 mg per kg per orally) and empagliflozin (10 mgper kg per orally) alone or in combination was administered to the diabetic rats for 4 days and 1 h before surgery. Moreover, a hypoxia-reperfusion injury was induced using sodium azide in NRK52E cells under a hyperglycemic environment to mimic the in vivo model. The cells were treated with phloretin (50 µM) and empagliflozin (100 nM) for 24 h. For biochemical analysis, plasma and urine samples were used. The kidney tissues were used to perform immunoblotting, histopathology, and immunohistochemistry. Other experiments like immunofluorescence, cell viability assay, and flow cytometry analysis were performed using the in vitro samples. The study outcomes revealed that compared to monotherapy, combination therapy of phloretin and empagliflozin was significantly effective. Phloretin and empagliflozin target the HMGB1/TLR4/MyD88/IK-ß/α/NF-κB pathway to reduce inflammation and apoptosis, in addition to their antihyperglycemic effect. Thus, phloretin, a natural dietary supplement, as an adjuvant therapy to empagliflozin can be helpful to reduce empagliflozin-associated side effects, by reducing its clinical dose and increasing its therapeutic efficacy in AKI-diabetes comorbidity.


Asunto(s)
Lesión Renal Aguda , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Masculino , Ratas , Animales , Transportador 2 de Sodio-Glucosa/efectos adversos , Transportador 2 de Sodio-Glucosa/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/inducido químicamente , Floretina/uso terapéutico , Ratas Wistar , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Nefropatías Diabéticas/metabolismo , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/etiología , Lesión Renal Aguda/prevención & control , Isquemia
12.
Drug Discov Today ; 28(8): 103649, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37268185

RESUMEN

Acute kidney injury (AKI)-to-chronic kidney disease (CKD) transition is a slow but persistent progression toward end-stage kidney disease. Earlier reports have shown that Hippo components, such as Yes-associated protein (YAP) and its homolog Transcriptional coactivator with PDZ-binding motif (TAZ), regulate inflammation and fibrogenesis during the AKI-to-CKD transition. Notably, the roles and mechanisms of Hippo components vary during AKI, AKI-to-CKD transition, and CKD. Hence, it is important to understand these roles in detail. This review addresses the potential of Hippo regulators or components as future therapeutic targets for halting the AKI-to-CKD transition.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Humanos , Vía de Señalización Hippo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo
13.
Fitoterapia ; 168: 105563, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37295755

RESUMEN

Acute kidney injury (AKI) has become a global health issue, with ∼12 million reports yearly, resulting in a persistent increase in morbidity and mortality rates. AKI pathophysiology is multifactorial involving oxidative stress, mitochondrial dysfunction, epigenetic modifications, inflammation, and eventually, cell death. Hence, therapies able to target multiple pathomechanisms can aid in AKI management. To change the drug discovery framework from "one drug, one target" to "multicomponent, multitarget," network pharmacology is evolving as a next-generation research approach. Researchers have used the network pharmacology approach to predict the role of nutraceuticals against different ailments including AKI. Nutraceuticals (herbal products, isolated nutrients, and dietary supplements) belong to the pioneering category of natural products and have shown protective action against AKI. Nutraceuticals have recently drawn attention because of their ability to provide physiological benefits with less toxic effects. This review emphasizes the nutraceuticals that exhibited renoprotection against AKI and can be used either as monotherapy or adjuvant with conventional therapies to boost their effectiveness and lessen the adverse effects. Additionally, the study sheds light on the application of network pharmacology as a cost-effective and time-saving approach for the therapeutic target prediction of nutraceuticals against AKI.


Asunto(s)
Lesión Renal Aguda , Farmacología en Red , Humanos , Estructura Molecular , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Suplementos Dietéticos , Descubrimiento de Drogas , Riñón
14.
Cells ; 12(20)2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37887284

RESUMEN

Calcineurin inhibitors (CNI) can suppress allo- and autoimmunity by suppressing T cell function but also have anti-proteinuric effects by stabilizing the cellular components of the kidney's filtration barrier. Therefore, CNI are used in autoimmune kidney diseases with proteinuria. However, the traditional CNI, cyclosporine A and tacrolimus, have a narrow therapeutic range, need monitoring of drug levels, and their use is associated with nephrotoxicity and metabolic alterations. Voclosporin (VOC), a novel CNI, no longer requires drug level monitoring and seems to lack these adverse effects, although hypertension and drug-drug interactions still occur. VOC demonstrated efficacy superior to standard-of-care in controlling active lupus nephritis in the phase 2 AURA-LV and the phase 3 AURORA-1 trials and was approved for the treatment of active lupus nephritis. However, how to implement VOC into the current and changing treatment landscape of lupus nephritis is still debated. Here, we review the unique chemistry, pharmacology, and toxicity profile of VOC, summarize the efficacy and safety data from the AURA-LV and AURORA-1 trials, and discuss the following four possible options to implement VOC into the management of lupus nephritis, namely regarding B cell-targeting therapy with belimumab (BEL). These include: 1. patient stratification to either VOC or BEL, 2. VOC/BEL combination therapy, 3. VOC-BEL sequential therapy, or 4. alternative options for the rapid antiproteinuric effect of VOC.


Asunto(s)
Ciclosporina , Nefritis Lúpica , Humanos , Inhibidores de la Calcineurina/efectos adversos , Ciclosporina/efectos adversos , Nefritis Lúpica/tratamiento farmacológico
15.
BioDrugs ; 37(4): 463-475, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37093522

RESUMEN

Lupus nephritis (LN) is a severe complication of systemic lupus erythematosus (SLE), a polyclonal systemic autoimmunity directed against nuclear and other self-antigens. SLE/LN affects mostly females during childbearing age, which puts them at risk for the progression of chronic kidney disease (CKD), cardiovascular disease, and pregnancy complications. The current management of LN involves the use of drugs with significant toxicities, and despite many attempts at novel drug interventions, the overall treatment efficacy has remained low. In this article, we discuss recent drug approvals and the upcoming pipeline of novel medications tested in clinical trials to improve effectiveness in terms of LN disease activity, LN relapse, and progression of LN-related CKD. In this context, we discuss (1) drugs with the potential to achieve these treatment goals by modulating SLE activity as the driving force for LN (e.g., belimumab, obinutuzumab, anifrolumab, and others); (2) drugs with SLE-non specific renoprotective effects by targeting non-immune mechanisms of LN progression (dapagliflozin, empagliflozin); and (3) drugs with dual immunosuppressive and antiproteinuric effects (voclosporin). Increasing the number of possible drug options will help to improve the management of LN in terms of efficacy and safety, and enable a more personalized treatment approach.


Asunto(s)
Productos Biológicos , Lupus Eritematoso Sistémico , Nefritis Lúpica , Insuficiencia Renal Crónica , Embarazo , Femenino , Humanos , Masculino , Nefritis Lúpica/tratamiento farmacológico , Lupus Eritematoso Sistémico/tratamiento farmacológico , Inmunosupresores/uso terapéutico , Insuficiencia Renal Crónica/tratamiento farmacológico , Productos Biológicos/uso terapéutico
16.
Drug Discov Today ; 28(2): 103466, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36509391

RESUMEN

Worldwide, around 850 million people are diagnosed with kidney disease but the available treatment options are still limited. Preclinical studies propose a plethora of druggable targets that can attenuate kidney disease and could qualify as novel therapeutic strategies, although most of these targets still await clinical testing. Here, we review some promising candidate targets for chronic kidney disease: intermedin, periostin, sirtuin, the cannabinoid receptor, Klotho, and uromodulin. For acute kidney injury, we discuss Apelin, Elabela, growth differentiation factor-15, Fyn kinase, and Klotho. Target selection for further clinical development should consider redundancies with the standard of care, potential synergistic effects with existing treatments, as well as the potential of additional effects on the cardiovascular system as a common comorbidity in patients with kidney disease.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Humanos , Glucuronidasa/metabolismo , Glucuronidasa/uso terapéutico , Riñón/metabolismo , Insuficiencia Renal Crónica/tratamiento farmacológico
17.
Life Sci ; 288: 120194, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34864061

RESUMEN

AIMS: The present study aimed at exploring the mechanisms behind Klotho regulation in hyperglycemia augmented AKI. In addition, epigenetic ways to restore the Klotho expression in AKI-diabetes comorbidity have been evaluated. MAIN METHODS: Bilateral ischemia-reperfusion injury (IRI) and chemical hypoxia-reperfusion injury (HRI) were developed in diabetic rats and, NRK52E cells under high glucose conditions respectively, to mimic the AKI condition. Plasma, urine, tubular lysate of the kidney and NRK52E cell lysate were used for biochemical, ELISA, histology, immunoblotting, RT-PCR and RNA interference studies. KEY FINDINGS: Hyperglycemia significantly aggravated IRI/HRI induced AKI as evidenced by biochemical and histological results. We also observed a significant increase in expressions of kidney specific histone deacetylases (HDACs), apoptotic and inflammatory proteins, and decrease in levels of endogenous Klotho, H3K9Ac and H3K27Ac proteins in hyperglycemic IRI/HRI groups. SIGNIFICANCE: Diabetes comorbidity exaggerates AKI, where endogenous Klotho loss could be a potential connecting link. However, kidney-specific HDACs inhibition showed reno-protection via restoring the endogenous Klotho loss and thus prevention of inflammation and apoptosis, which could prove to be a potential therapeutic strategy against diabetes-AKI comorbidity.


Asunto(s)
Lesión Renal Aguda/prevención & control , Diabetes Mellitus Experimental/complicaciones , Nefropatías Diabéticas/prevención & control , Regulación de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Proteínas Klotho/metabolismo , Lesión Renal Aguda/etiología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Animales , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Proteínas Klotho/genética , Masculino , Ratas , Ratas Wistar
18.
Arch Physiol Biochem ; : 1-9, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35913792

RESUMEN

CONTEXT: Persistent hyperglycaemia increases SET7/9 expression and endoplasmic reticulum (ER) stress which causes inflammation, apoptosis, and fibrosis in renal tubular epithelial cells leading to diabetic kidney disease (DKD). OBJECTIVE: Current study explores the renoprotective potential of a novel SET7/9 inhibitor, Cyproheptadine, and the underlying molecular mechanisms in hyperglycaemia-induced renal tubular epithelial cell injury. METHODS: Change in expression of SET7/9, histone H3 lysine (K4) monomethylation (H3K4Me1), inflammatory, fibrotic, and ER stress proteins were evaluated in-vivo and in-vitro. NRK-52E cells were used to study the preventive effect of Cyproheptadine against hyperglycaemia-induced ER stress and subsequent inflammation and fibrosis. RESULTS: SET7/9 and H3K4Me1 expression significantly increased with ER stress, inflammation, apoptosis, and fibrosis, in-vivo and in-vitro under hyperglycaemia. However, the cells treated with Cyproheptadine showed significant suppression of H3K4Me1 and reduction in ER stress, inflammation, apoptosis, and fibrosis. CONCLUSION: Cyproheptadine prevented hyperglycaemia-induced renal fibrosis and inflammation by reducing H3K4Me1 expression and ER stress.

19.
J Mol Med (Berl) ; 100(7): 1017-1026, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35704060

RESUMEN

Kidney disease affects more than 10% of the worldwide population and causes significant morbidity and mortality. Epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs (ncRNAs) play a pivotal role in the progression of kidney disease. These epigenetic mechanisms are reversible and majorly involved in regulating gene expression of inflammatory, fibrotic, and apoptotic proteins. Emerging data suggest that the Toll-like receptor 2 and Toll-like receptor 4 (TLR2 and TLR4) are expressed by almost all types of kidney cells and known for promoting inflammation by recognizing damage-associated molecular proteins (DAMPs). Epigenetic mechanisms regulate TLR2 and TLR4 signaling in various forms of kidney disease where different histone modifications promote the transcription of the TLR2 and TLR4 gene and its ligand high mobility group box protein 1 (HMGB1). Moreover, numerous long non-coding RNAs (LncRNAs) and microRNAs (miRNAs) modulate TLR2 and TLR4 signaling in kidney disease. However, the precise mechanisms behind this regulation are still enigmatic. Studying the epigenetic mechanisms involved in the regulation of TLR2 and TLR4 signaling in the development of kidney disease may help in understanding and finding novel therapeutic strategies. This review discusses the intricate relationship of epigenetic mechanisms with TLR2 and TLR4 in different forms of kidney diseases. In addition, we discuss the different lncRNAs and miRNAs that regulate TLR2 and TLR4 as potential therapeutic targets in kidney disease.


Asunto(s)
Enfermedades Renales , MicroARNs , ARN Largo no Codificante , Epigénesis Genética , Humanos , Enfermedades Renales/genética , MicroARNs/genética , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
20.
Biochim Biophys Acta Mol Basis Dis ; 1868(12): 166532, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36041714

RESUMEN

Acute kidney injury (AKI) is a collection of clinical syndromes with persistent increases in morbidity and mortality rates. Hyperglycemia is a risk factor for AKI development. Renin-angiotensin-aldosterone system (RAS) disequilibrium and Klotho downregulation also play a pivotal role in the pathogenesis of AKI. Moreover, the relationship between Klotho and ACE2 (a component of non-conventional RAS) regulation in AKI remains an unexplored area of research. Hence, in this study, we investigated ACE2 and Klotho regulation in AKI using ischemic Wistar rats and NRK52E cells under normal and hyperglycemic conditions. Our findings suggested that hyperglycemia exacerbates renal ischemia-reperfusion injury (IRI)/hypoxia-reperfusion injury (HRI) induced AKI. Systemic and renal Klotho deficiency is a novel hallmark of AKI. Additionally, ACE2 is a protective component of the RAS, and its inhibition/deficiency leads to inflammation, apoptosis, Klotho downregulation, and thus AKI development. However, ACE2 activation resulted in the amelioration of AKI. Importantly, ACE2 plays an important role in Klotho upregulation, which might act as an intermediate for ACE2-mediated reno-protection. In conclusion, ACE2 activator i.e. DIZE restored endogenous ACE2-Ang-(1-7)-Klotho level, inhibited apoptosis and inflammation, and ameliorates IRI/HRI induced AKI under diabetic and non-diabetic conditions. Hence, in future, targeting ACE2-Ang-(1-7)-Klotho axis may prove a novel therapeutic strategy against AKI, where further preclinical and clinical investigations are required to verify the clinical potential of this finding.


Asunto(s)
Lesión Renal Aguda , Enzima Convertidora de Angiotensina 2 , Diabetes Mellitus , Hiperglucemia , Proteínas Klotho , Daño por Reperfusión , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/etiología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Comorbilidad , Inflamación/patología , Proteínas Klotho/metabolismo , Peptidil-Dipeptidasa A/genética , Ratas , Ratas Wistar , Daño por Reperfusión/complicaciones , Daño por Reperfusión/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA