Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Neurosci ; 35(19): 7503-8, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25972176

RESUMEN

Increasing plasticity in neurons of the prefrontal cortex (PFC) has been proposed as a possible therapeutic tool to enhance extinction, a process that is impaired in post-traumatic stress disorder, schizophrenia, and addiction. To test this hypothesis, we generated transgenic mice that overexpress neurogranin (a calmodulin-binding protein that facilitates long-term potentiation) in the PFC. Neurogranin overexpression in the PFC enhanced long-term potentiation and increased the rates of extinction learning of both fear conditioning and sucrose self-administration. Our results indicate that elevated neurogranin function within the PFC can enhance local plasticity and increase the rate of extinction learning across different behavioral tasks. Thus, neurogranin can provide a molecular link between enhanced plasticity and enhanced extinction.


Asunto(s)
Extinción Psicológica/fisiología , Neurogranina/metabolismo , Plasticidad Neuronal/genética , Corteza Prefrontal/fisiología , Análisis de Varianza , Animales , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Condicionamiento Clásico/fisiología , Condicionamiento Operante/fisiología , Estimulación Eléctrica , Miedo/fisiología , Técnicas In Vitro , Potenciación a Largo Plazo/genética , Masculino , Ratones , Ratones Transgénicos , Neurogranina/genética , Corteza Prefrontal/citología , Células Piramidales/metabolismo , Sacarosa/administración & dosificación
2.
J Neurosci ; 32(20): 6967-80, 2012 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-22593065

RESUMEN

Synaptic plasticity, the cellular basis of learning and memory, involves the dynamic trafficking of AMPA receptors (AMPARs) into and out of synapses. One of the remaining key unanswered aspects of AMPAR trafficking is the mechanism by which synaptic strength is preserved despite protein turnover. In particular, the identity of AMPAR scaffolding molecule(s) involved in the maintenance of GluA2-containing AMPARs is completely unknown. Here we report that the synaptic scaffolding molecule (S-SCAM; also called membrane-associated guanylate kinase inverted-2 and atrophin interacting protein-1) plays the critical role of maintaining synaptic strength. Increasing S-SCAM levels in rat hippocampal neurons led to specific increases in the surface AMPAR levels, enhanced AMPAR-mediated synaptic transmission, and enlargement of dendritic spines, without significantly effecting GluN levels or NMDA receptor (NMDAR) EPSC. Conversely, decreasing S-SCAM levels by RNA interference-mediated knockdown caused the loss of synaptic AMPARs, which was followed by a severe reduction in the dendritic spine density. Importantly, S-SCAM regulated synaptic AMPAR levels in a manner, dependent on GluA2 not GluA1, sensitive to N-ethylmaleimide-sensitive fusion protein interaction, and independent of activity. Further, S-SCAM increased surface AMPAR levels in the absence of PSD-95, while PSD-95 was dependent on S-SCAM to increase surface AMPAR levels. Finally, S-SCAM overexpression hampered NMDA-induced internalization of AMPARs and prevented the induction of long term-depression, while S-SCAM knockdown did not. Together, these results suggest that S-SCAM is an essential AMPAR scaffolding molecule for the GluA2-containing pool of AMPARs, which are involved in the constitutive pathway of maintaining synaptic strength.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Guanilato-Quinasas/fisiología , Densidad Postsináptica/metabolismo , Receptores AMPA/fisiología , Transmisión Sináptica/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Células Cultivadas , Espinas Dendríticas/metabolismo , Homólogo 4 de la Proteína Discs Large , Femenino , Técnicas de Silenciamiento del Gen/métodos , Guanilato-Quinasas/genética , Guanilato-Quinasas/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Proteínas de la Membrana/metabolismo , Proteínas Sensibles a N-Etilmaleimida/metabolismo , N-Metilaspartato/farmacología , N-Metilaspartato/fisiología , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Ratas , Ratas Sprague-Dawley , Receptores AMPA/genética , Receptores AMPA/metabolismo , Transmisión Sináptica/efectos de los fármacos
3.
Eur J Neurosci ; 33(2): 244-50, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21198977

RESUMEN

Learning-related potentiation of synaptic strength at Cornu ammonis subfield 1 (CA1) hippocampal excitatory synapses is dependent on neuronal activity and the activation of glutamate receptors. However, molecular mechanisms that regulate and fine-tune the expression of long-term potentiation (LTP) are not well understood. Recently it has been indicated that neurogranin (Ng), a neuron-specific, postsynaptic protein that is phosphorylated by protein kinase C, potentiates synaptic transmission in an LTP-like manner. Here, we report that a Ng mutant that is unable to be phosphorylated cannot potentiate synaptic transmission in rat CA1 hippocampal neurons and results in a submaximal expression of LTP. Our results provide the first evidence that the phosphorylation of Ng can regulate LTP expression.


Asunto(s)
Potenciación a Largo Plazo/fisiología , Neurogranina/metabolismo , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Fosforilación , Ratas , Sinapsis/metabolismo , Transmisión Sináptica/fisiología
4.
Exp Neurol ; 277: 115-123, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26721336

RESUMEN

Amyloid ß (Aß) is widely considered one of the early causes of cognitive deficits observed in Alzheimer's disease. Many of the deficits caused by Aß are attributed to its disruption of synaptic function represented by its blockade of long-term potentiation (LTP) and its induction of synaptic depression. Identifying pathways that reverse these synaptic deficits may open the door to new therapeutic targets. In this study, we explored the possibility that Neurogranin (Ng)-a postsynaptic calmodulin (CaM) targeting protein that enhances synaptic function-may rescue Aß-mediated deficits in synaptic function. Our results show that Ng is able to reverse synaptic depression and LTP deficits induced by Aß. Furthermore, Ng's restoration of synaptic transmission is through the insertion of GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptors (AMPARs). These restorative effects of Ng are dependent on the interaction of Ng and CaM and CaM-dependent activation of CaMKII. Overall, this study identifies a novel mechanism to rescue synaptic deficits induced by Aß oligomers. It also suggests Ng and CaM signaling as potential therapeutic targets for Alzheimer's disease as well as important tools to further explore the pathophysiology underlying the disease.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Hipocampo/citología , Potenciación a Largo Plazo/efectos de los fármacos , Neurogranina/farmacología , Neuronas/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Animales Recién Nacidos , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Humanos , Técnicas In Vitro , Mutagénesis , Mutación/genética , Red Nerviosa/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología
5.
Nat Neurosci ; 19(3): 443-53, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26780512

RESUMEN

Dyshomeostasis of amyloid-ß peptide (Aß) is responsible for synaptic malfunctions leading to cognitive deficits ranging from mild impairment to full-blown dementia in Alzheimer's disease. Aß appears to skew synaptic plasticity events toward depression. We found that inhibition of PTEN, a lipid phosphatase that is essential to long-term depression, rescued normal synaptic function and cognition in cellular and animal models of Alzheimer's disease. Conversely, transgenic mice that overexpressed PTEN displayed synaptic depression that mimicked and occluded Aß-induced depression. Mechanistically, Aß triggers a PDZ-dependent recruitment of PTEN into the postsynaptic compartment. Using a PTEN knock-in mouse lacking the PDZ motif, and a cell-permeable interfering peptide, we found that this mechanism is crucial for Aß-induced synaptic toxicity and cognitive dysfunction. Our results provide fundamental information on the molecular mechanisms of Aß-induced synaptic malfunction and may offer new mechanism-based therapeutic targets to counteract downstream Aß signaling.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Trastornos del Conocimiento/fisiopatología , Fosfohidrolasa PTEN/fisiología , Transmisión Sináptica/fisiología , Enfermedad de Alzheimer/complicaciones , Péptidos beta-Amiloides/toxicidad , Animales , Trastornos del Conocimiento/complicaciones , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Ratones , Ratones Transgénicos , Dominios PDZ/genética , Dominios PDZ/fisiología , Fosfohidrolasa PTEN/antagonistas & inhibidores , Fosfohidrolasa PTEN/genética , Cultivo Primario de Células , Ratas , Transmisión Sináptica/efectos de los fármacos
6.
J Vis Exp ; (59)2012 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-22297704

RESUMEN

Calcium (Ca(2+)) is an ion vital in regulating cellular function through a variety of mechanisms. Much of Ca(2+) signaling is mediated through the calcium-binding protein known as calmodulin (CaM). CaM is involved at multiple levels in almost all cellular processes, including apoptosis, metabolism, smooth muscle contraction, synaptic plasticity, nerve growth, inflammation and the immune response. A number of proteins help regulate these pathways through their interaction with CaM. Many of these interactions depend on the conformation of CaM, which is distinctly different when bound to Ca(2+) (Ca(2+)-CaM) as opposed to its Ca(2+)-free state (ApoCaM). While most target proteins bind Ca(2+)-CaM, certain proteins only bind to ApoCaM. Some bind CaM through their IQ-domain, including neuromodulin, neurogranin (Ng), and certain myosins. These proteins have been shown to play important roles in presynaptic function, postsynaptic function, and muscle contraction, respectively. Their ability to bind and release CaM in the absence or presence of Ca(2+) is pivotal in their function. In contrast, many proteins only bind Ca(2+)-CaM and require this binding for their activation. Examples include myosin light chain kinase, Ca(2+)/CaM-dependent kinases (CaMKs) and phosphatases (e.g. calcineurin), and spectrin kinase, which have a variety of direct and downstream effects. The effects of these proteins on cellular function are often dependent on their ability to bind to CaM in a Ca(2+)-dependent manner. For example, we tested the relevance of Ng-CaM binding in synaptic function and how different mutations affect this binding. We generated a GFP-tagged Ng construct with specific mutations in the IQ-domain that would change the ability of Ng to bind CaM in a Ca(2+)-dependent manner. The study of these different mutations gave us great insight into important processes involved in synaptic function. However, in such studies, it is essential to demonstrate that the mutated proteins have the expected altered binding to CaM. Here, we present a method for testing the ability of proteins to bind to CaM in the presence or absence of Ca(2+), using CaMKII and Ng as examples. This method is a form of affinity chromatography referred to as a CaM pull-down assay. It uses CaM-Sepharose beads to test proteins that bind to CaM and the influence of Ca(2+) on this binding. It is considerably more time efficient and requires less protein relative to column chromatography and other assays. Altogether, this provides a valuable tool to explore Ca(2+)/CaM signaling and proteins that interact with CaM.


Asunto(s)
Proteínas de Unión a Calmodulina/metabolismo , Cromatografía de Afinidad/métodos , Animales , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/química , Hipocampo/metabolismo , Humanos , Unión Proteica , Sefarosa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA