Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 138(1): 186-97, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19559469

RESUMEN

About 500 million years ago, a new type of adaptive immune defense emerged in basal jawed vertebrates, accompanied by morphological innovations, including the thymus. Did these evolutionary novelties arise de novo or from elaboration of ancient genetic networks? We reconstructed the genetic changes underlying thymopoiesis by comparative genome and expression analyses in chordates and basal vertebrates. The derived models of genetic networks were experimentally verified in bony fishes. Ancestral networks defining circumscribed regions of the pharyngeal epithelium of jawless vertebrates expanded in cartilaginous fishes to incorporate novel genes, notably those encoding chemokines. Correspondingly, novel networks evolved in lymphocytes of jawed vertebrates to control the expression of additional chemokine receptors. These complementary changes enabled unprecedented Delta/Notch signaling between pharyngeal epithelium and lymphoid cells that was exploited for specification to the T cell lineage. Our results provide a framework elucidating the evolution of key features of the adaptive immune system in jawed vertebrates.


Asunto(s)
Evolución Biológica , Redes Reguladoras de Genes , Timo/inmunología , Vertebrados/genética , Vertebrados/inmunología , Animales , Quimiocinas/genética , Quimiocinas/inmunología , Cordados no Vertebrados/genética , Cordados no Vertebrados/inmunología , Peces/genética , Peces/inmunología , Humanos , Lampreas/genética , Lampreas/inmunología , Linfocitos/inmunología , Datos de Secuencia Molecular , Receptores de Quimiocina/genética , Receptores de Quimiocina/inmunología
2.
Evol Dev ; 11(2): 142-51, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19245546

RESUMEN

In amphioxus embryos, the early development of the type 1 sensory neurons was followed by Tlx gene expression and scanning electron microscopy. At the early neurula stage, AmphiTlx transcription is first detectable in a ventral zone of epidermis. In later embryos, expression is also seen in differentiating type 1 receptor cells of the peripheral nervous system, in a few cells in the central nervous system (CNS), and in anterior notochord cells. The type 1 receptors originate from the ventral epidermis by delaminating individually into the subepidermal space, where they can conveniently be visualized because of their strong expression of AmphiTlx. Within the subepidermal space, the apex of each delaminated receptor loses its cilium and microvilli whereas the base of the cell extends lamellate pseudopodia on the surface of the deeper tissues. The pseudopodia become oriented toward the dorsal side of the embryo, the direction of cell migration. After reaching the flanks of the embryo, the receptor cell stops migrating, loses its pseudopodia, and produces an axon that extends to the CNS. As the receptor finishes differentiating, it downregulates Tlx expression and evidently re-inserts its perikaryon into the epidermis. The discussion considers the possible homology of the type 1 receptor neurons of amphioxus with migrating lateral line primordia and hair cells of vertebrates.


Asunto(s)
Cordados no Vertebrados/embriología , Sistema Nervioso Periférico/embriología , Sistema Nervioso Periférico/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Diferenciación Celular , Movimiento Celular , Cordados no Vertebrados/fisiología , Epidermis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Hibridación in Situ , Microscopía Electrónica de Rastreo/métodos , Microvellosidades/metabolismo , Modelos Biológicos , Cresta Neural/metabolismo , Neuronas/metabolismo
3.
Gene Expr Patterns ; 9(5): 329-34, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19233318

RESUMEN

Here we describe the developmental expression of the three iroquois genes (BfIrxA, BfIrxB, and BfIrxC) of amphioxus. BfIrxB transcription is first detected at the gastrula stage in mesendoderm just within the dorsal lip of the blastopore (a probable homolog of Spemann's organizer) and in ectoderm. In early neurulae, expression begins in presumptive pharyngeal endoderm, somitic mesoderm, and neural plate. Mid-neurulae express BfIrxB throughout the hindbrain, posterior somites, pharyngeal endoderm, and notochord. In early larvae, expression is largely downregulated in the nerve cord, somites and notochord, but remains strong in the pharyngeal endoderm associated with the forming gill slits; also, a late expression domain appears in the ciliary tuft ectoderm. BfIrxA and BfIrxC, are not as widely expressed as BfIrxB. Both are first expressed in the presumptive hindbrain and presumptive pharyngeal endoderm at the early neurula stages. In the mid-neurula, additional expression domains appear in the extremities of the notochord. Neural expression is downregulated by late neurula. In the early larva, expression is chiefly limited to pharyngeal endoderm associated with the forming gill slits, excepting a small new domain of BfIrxC (not BfIrxA) expression in the ciliary tuft ectoderm. In comparison to developing vertebrates, embryos and larvae of amphioxus express iroquois genes in fewer tissues. Thus, iroquois genes of the proximate ancestor of the vertebrates evidently assumed numerous new roles during vertebrate evolution, including the division of the central nervous system into several sub-regions along its anteroposterior axis.


Asunto(s)
Sistema Nervioso Central/metabolismo , Cordados no Vertebrados/genética , Gástrula/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Animales , Sistema Nervioso Central/embriología , Cordados no Vertebrados/embriología , Perfilación de la Expresión Génica , Hibridación in Situ , Familia de Multigenes/genética
4.
Dev Genes Evol ; 218(11-12): 599-611, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18949486

RESUMEN

In the basal chordate amphioxus (Branchiostoma), somites extend the full length of the body. The anteriormost somites segment during the gastrula and neurula stages from dorsolateral grooves of the archenteron. The remaining ones pinch off, one at a time, from the tail bud. These posterior somites appear to be homologous to those of vertebrates, even though the latter pinch off from the anterior end of bands of presomitic mesoderm rather than directly from the tail bud. To gain insights into the evolution of mesodermal segmentation in chordates, we determined the expression of ten genes in nascent amphioxus somites. Five (Uncx4.1, NeuroD/atonal-related, IrxA, Pcdhdelta2-17/18, and Hey1) are expressed in stripes in the dorsolateral mesoderm at the gastrula stage and in the tail bud while three (Paraxis, Lcx, and Axin) are expressed in the posterior mesendoderm at the gastrula and neurula stages and in the tail bud at later stages. Expression of two genes (Pbx and OligA) suggests roles in the anterior somites that may be unrelated to initial segmentation. Together with previous data, our results indicate that, with the exception that Engrailed is only segmentally expressed in the anterior somites, the genetic mechanisms controlling formation of both the anterior and posterior somites are probably largely identical. Thus, the fundamental pathways for mesodermal segmentation involving Notch-Delta, Wnt/beta-catenin, and Fgf signaling were already in place in the common ancestor of amphioxus and vertebrates although budding of somites from bands of presomitic mesoderm exhibiting waves of expression of Notch, Wnt, and Fgf target genes was likely a vertebrate novelty. Given the conservation of segmentation gene expression between amphioxus and vertebrate somites, we propose that the clock mechanism may have been established in the basal chordate, while the wavefront evolved later in the vertebrate lineage.


Asunto(s)
Cordados no Vertebrados/embriología , Cordados no Vertebrados/genética , Animales , Evolución Biológica , Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal , Somitos/metabolismo
5.
Wiley Interdiscip Rev Dev Biol ; 1(2): 231-52, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23801438

RESUMEN

Gastrulation in the sea urchin begins with ingression of the primary mesenchyme cells (PMCs) at the vegetal pole of the embryo. After entering the blastocoel the PMCs migrate, form a syncitium, and synthesize the skeleton of the embryo. Several hours after the PMCs ingress the vegetal plate buckles to initiate invagination of the archenteron. That morphogenetic process occurs in several steps. The nonskeletogenic cells produce the initial inbending of the vegetal plate. Endoderm cells then rearrange and extend the length of the gut across the blastocoel to a target near the animal pole. Finally, cells that will form part of the midgut and hindgut are added to complete gastrulation. Later, the stomodeum invaginates from the oral ectoderm and fuses with the foregut to complete the archenteron. In advance of, and during these morphogenetic events, an increasingly complex input of transcription factors controls the specification and the cell biological events that conduct the gastrulation movements.


Asunto(s)
Linaje de la Célula , Redes Reguladoras de Genes , Osteogénesis , Erizos de Mar/embriología , Animales , Erizos de Mar/genética , Erizos de Mar/metabolismo , Células Madre/citología , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA