Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Med ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107561

RESUMEN

Clonal hematopoiesis of indeterminate potential (CHIP) has been associated with an increased risk of cardiovascular (CV) disease in the general population. Currently, it is unclear whether this association is observed in large clinical trial cohorts with a high burden of existing CV disease or whether CV therapies can mitigate CHIP-associated CV risk. To address these questions, we studied 63,700 patients from five randomized trials that tested established therapies for CV disease, including treatments targeting the proteins PCSK9, SGLT2, P2Y12 and FXa. During a median follow-up of 2.5 years, 7,453 patients had at least one CV event (CV death, myocardial infarction (MI), ischemic stroke or coronary revascularization). The adjusted hazard ratio (aHR) for CV events for CHIP+ patients was 1.07 (95% CI: 0.99-1.16, P = 0.08), with consistent risk estimates across each component of CV risk. Significant heterogeneity in the risk of MI was observed, such that CHIP+ patients had a 30% increased risk of first MI (aHR = 1.31 (1.05-1.64), P = 0.02) but no increased risk of recurrent MI (aHR = 0.94 (0.79-1.13), Pint = 0.008), as compared to CHIP- patients. Moreover, no significant heterogeneity in treatment effect between individuals with and without CHIP was observed for any of the therapies studied in the five trials. These results indicate that in clinical trial populations, CHIP is associated with incident but not recurrent coronary events and that the presence of CHIP does not appear to identify patients who will derive greater benefit from commonly used CV therapies.

2.
JAMA Cardiol ; 9(4): 357-366, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38416462

RESUMEN

Importance: Polygenic risk scores (PRSs) have proven to be as strong as or stronger than established clinical risk factors for many cardiovascular phenotypes. Whether this is true for aortic stenosis remains unknown. Objective: To develop a novel aortic stenosis PRS and compare its aortic stenosis risk estimation to established clinical risk factors. Design, Setting, and Participants: This was a longitudinal cohort study using data from the Million Veteran Program (MVP; 2011-2020), UK Biobank (2006-2010), and 6 Thrombolysis in Myocardial Infarction (TIMI) trials, including DECLARE-TIMI 58 (2013-2018), FOURIER (TIMI 59; 2013-2017), PEGASUS-TIMI 54 (2010-2014), SAVOR-TIMI 53 (2010-2013), SOLID-TIMI 52 (2009-2014), and ENGAGE AF-TIMI 48 (2008-2013), which were a mix of population-based and randomized clinical trials. Individuals from UK Biobank and the MVP meeting a previously validated case/control definition for aortic stenosis were included. All individuals from TIMI trials were included unless they had a documented preexisting aortic valve replacement. Analysis took place from January 2022 to December 2023. Exposures: PRS for aortic stenosis (developed using data from MVP and validated in UK Biobank) and other previously validated cardiovascular PRSs, defined either as a continuous variable or as low (bottom 20%), intermediate, and high (top 20%), and clinical risk factors. Main Outcomes: Aortic stenosis (defined using International Classification of Diseases or Current Procedural Terminology codes in UK Biobank and MVP or safety event data in the TIMI trials). Results: The median (IQR) age in MVP was 67 (57-73) years, and 135 140 of 147 104 participants (92%) were male. The median (IQR) age in the TIMI trials was 66 (54-78) years, and 45 524 of 59 866 participants (71%) were male. The best aortic stenosis PRS incorporated 5 170 041 single-nucleotide variants and was associated with aortic stenosis in both the MVP testing sample (odds ratio, 1.41; 95% CI, 1.37-1.45 per 1 SD PRS; P = 4.6 × 10-116) and TIMI trials (hazard ratio, 1.44; 95% CI, 1.27-1.62 per 1 SD PRS; P = 3.2 × 10-9). Among genetic and clinical risk factors, the aortic stenosis PRS performed comparably to most risk factors besides age, and within a given age range, the combination of clinical and genetic risk factors was additive, providing a 3- to 4-fold increased gradient of risk of aortic stenosis. However, the addition of the aortic stenosis PRS to a model including clinical risk factors only improved risk discrimination of aortic stenosis by 0.01 to 0.02 (C index in MVP: 0.78 with clinical risk factors, 0.79 with risk factors and aortic stenosis PRS; C index in TIMI: 0.71 with clinical risk factors, 0.73 with risk factors and aortic stenosis PRS). Conclusions: This study developed and validated 1 of the first aortic stenosis PRSs. While aortic stenosis genetic risk was independent from clinical risk factors and performed comparably to all other risk factors besides age, genetic risk resulted in only a small improvement in overall aortic stenosis risk discrimination beyond age and clinical risk factors. This work sets the stage for further development of an aortic stenosis PRS.


Asunto(s)
Estenosis de la Válvula Aórtica , Infarto del Miocardio , Humanos , Masculino , Anciano , Femenino , Puntuación de Riesgo Genético , Estudios Longitudinales , Predisposición Genética a la Enfermedad , Factores de Riesgo , Estenosis de la Válvula Aórtica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA