RESUMEN
BACKGROUND: Intermittent preventive treatment (IPTp) for pregnant women with sulfadoxine-pyrimethamine (SP) is widely implemented for the prevention of malaria in pregnancy and adverse birth outcomes. The efficacy of SP is declining, and there are concerns that IPTp may have reduced impact in areas of high resistance. We sought to determine the protection afforded by SP as part of IPTp against adverse birth outcomes in an area with high levels of SP resistance on the Kenyan coast. METHODS: A secondary analysis of surveillance data on deliveries at the Kilifi County Hospital between 2015 and 2021 was undertaken in an area of low malaria transmission and high parasite mutations associated with SP resistance. A multivariable logistic regression model was developed to estimate the effect of SP doses on the risk of low birthweight (LBW) deliveries and stillbirths. RESULTS: Among 27 786 deliveries, 3 or more doses of IPTp-SP were associated with a 27% reduction in the risk of LBW (adjusted odds ratio [aOR], 0.73; 95% confidence interval [CI], .64-.83; P < .001) compared with no dose. A dose-response association was observed with increasing doses of SP from the second trimester linked to increasing protection against LBW deliveries. Three or more doses of IPTp-SP were also associated with a 21% reduction in stillbirth deliveries (aOR, 0.79; 95% CI, .65-.97; P = .044) compared with women who did not take any dose of IPTp-SP. CONCLUSIONS: The continued significant association of SP on LBW deliveries suggests that the intervention may have a non-malaria impact on pregnancy outcomes.
Asunto(s)
Antimaláricos , Malaria , Complicaciones Parasitarias del Embarazo , Complicaciones del Embarazo , Femenino , Embarazo , Humanos , Antimaláricos/uso terapéutico , Kenia/epidemiología , Malaria/tratamiento farmacológico , Malaria/epidemiología , Malaria/prevención & control , Pirimetamina/uso terapéutico , Sulfadoxina/uso terapéutico , Combinación de Medicamentos , Resultado del Embarazo , Mortinato/epidemiología , Complicaciones Parasitarias del Embarazo/tratamiento farmacológico , Complicaciones Parasitarias del Embarazo/epidemiología , Complicaciones Parasitarias del Embarazo/prevención & controlRESUMEN
BACKGROUND: Understanding spatial variations in health outcomes is a fundamental component in the design of effective, efficient public health strategies. Here we analyse the spatial heterogeneity of low birthweight (LBW) hospital deliveries from a demographic surveillance site on the Kenyan coast. METHODS: A secondary data analysis on singleton livebirths that occurred between 2011 and 2021 within the rural areas of the Kilifi Health and demographic surveillance system (KHDSS) was undertaken. Individual-level data was aggregated at enumeration zone (EZ) and sub-location level to estimate the incidence of LBW adjusted for accessibility index using the Gravity model. Finally, spatial variations in LBW were assessed using Martin Kulldorf's spatial scan statistic under Discrete Poisson distribution. RESULTS: Access adjusted LBW incidence was estimated as 87 per 1,000 person years in the under 1 population (95% CI: 80, 97) at the sub-location level similar to EZ. The adjusted incidence ranged from 35 to 159 per 1,000 person years in the under 1 population at sub-location level. There were six significant clusters identified at sub-location level and 17 at EZ level using the spatial scan statistic. CONCLUSIONS: LBW is a significant health risk on the Kenya coast, possibly under-estimated from previous health information systems, and the risk of LBW is not homogenously distributed across areas served by the County hospital.
Asunto(s)
Recién Nacido de Bajo Peso , Embarazo Múltiple , Recién Nacido , Embarazo , Femenino , Humanos , Kenia/epidemiología , Peso al Nacer , IncidenciaRESUMEN
BACKGROUND: Understanding the age patterns of disease is necessary to target interventions to maximise cost-effective impact. New malaria chemoprevention and vaccine initiatives target young children attending routine immunisation services. Here we explore the relationships between age and severity of malaria hospitalisation versus malaria transmission intensity. METHODS: Clinical data from 21 surveillance hospitals in East Africa were reviewed. Malaria admissions aged 1 month to 14 years from discrete administrative areas since 2006 were identified. Each site-time period was matched to a model estimated community-based age-corrected parasite prevalence to provide predictions of prevalence in childhood (PfPR2-10). Admission with all-cause malaria, severe malaria anaemia (SMA), respiratory distress (RD) and cerebral malaria (CM) were analysed as means and predicted probabilities from Bayesian generalised mixed models. RESULTS: 52,684 malaria admissions aged 1 month to 14 years were described at 21 hospitals from 49 site-time locations where PfPR2-10 varied from < 1 to 48.7%. Twelve site-time periods were described as low transmission (PfPR2-10 < 5%), five low-moderate transmission (PfPR2-10 5-9%), 20 moderate transmission (PfPR2-10 10-29%) and 12 high transmission (PfPR2-10 ≥ 30%). The majority of malaria admissions were below 5 years of age (69-85%) and rare among children aged 10-14 years (0.7-5.4%) across all transmission settings. The mean age of all-cause malaria hospitalisation was 49.5 months (95% CI 45.1, 55.4) under low transmission compared with 34.1 months (95% CI 30.4, 38.3) at high transmission, with similar trends for each severe malaria phenotype. CM presented among older children at a mean of 48.7 months compared with 39.0 months and 33.7 months for SMA and RD, respectively. In moderate and high transmission settings, 34% and 42% of the children were aged between 2 and 23 months and so within the age range targeted by chemoprevention or vaccines. CONCLUSIONS: Targeting chemoprevention or vaccination programmes to areas where community-based parasite prevalence is ≥10% is likely to match the age ranges covered by interventions (e.g. intermittent presumptive treatment in infancy to children aged 2-23 months and current vaccine age eligibility and duration of efficacy) and the age ranges of highest disease burden.
Asunto(s)
Malaria Cerebral , Malaria Falciparum , Adolescente , África Oriental/epidemiología , Teorema de Bayes , Niño , Preescolar , Hospitalización , Humanos , Lactante , Malaria Cerebral/epidemiología , Malaria Falciparum/epidemiología , FenotipoRESUMEN
INTRODUCTION: In order to improve our understanding of the fundamental limits of core interventions and guide efforts based on prioritization and identification of effective/novel interventions with great potentials to interrupt persistent malaria transmission in the context of high vector control coverage, the drivers of persistent disease transmission were investigated in three eco-epidemiological settings; forested areas in Cameroon, coastal area in Kenya and highland areas in Ethiopia. METHODS: Mosquitoes were sampled in three eco-epidemiological settings using different entomological sampling techniques and analysed for Plasmodium infection status and blood meal origin in blood-fed specimens. Human behavioural surveys were conducted to assess the knowledge and attitude of the population on malaria and preventive measures, their night activities, and sleeping pattern. The parasitological analysis was conducted to determine the prevalence of Plasmodium infection in the population using rapid diagnostic tests. RESULTS: Despite the diversity in the mosquito fauna, their biting behaviour was found to be closely associated to human behaviour in the three settings. People in Kenya and Ethiopia were found to be more exposed to mosquito bites during the early hours of the evening (18-21h) while it was in the early morning (4-6 am) in Cameroon. Malaria transmission was high in Cameroon compared to Kenya and Ethiopia with over 50% of the infected bites recorded outdoors. The non-users of LLINs were 2.5 to 3 times more likely to be exposed to the risk of acquiring malaria compared to LLINs users. Malaria prevalence was high (42%) in Cameroon, and more than half of the households visited had at least one individual infected with Plasmodium parasites. CONCLUSIONS: The study suggests high outdoor malaria transmission occurring in the three sites with however different determinants driving residual malaria transmission in these areas.
Asunto(s)
Anopheles/parasitología , Malaria/transmisión , Control de Mosquitos/métodos , Mosquitos Vectores/parasitología , Plasmodium , Animales , Camerún/epidemiología , Etiopía/epidemiología , Humanos , Kenia/epidemiología , Malaria/epidemiologíaRESUMEN
BACKGROUND: The over-distributed pattern of malaria transmission has led to attempts to define malaria "hotspots" that could be targeted for purposes of malaria control in Africa. However, few studies have investigated the use of routine health facility data in the more stable, endemic areas of Africa as a low-cost strategy to identify hotspots. Here the objective was to explore the spatial and temporal dynamics of fever positive rapid diagnostic test (RDT) malaria cases routinely collected along the Kenyan Coast. METHODS: Data on fever positive RDT cases between March 2018 and February 2019 were obtained from patients presenting to six out-patients health-facilities in a rural area of Kilifi County on the Kenyan Coast. To quantify spatial clustering, homestead level geocoded addresses were used as well as aggregated homesteads level data at enumeration zone. Data were sub-divided into quarterly intervals. Kulldorff's spatial scan statistics using Bernoulli probability model was used to detect hotspots of fever positive RDTs across all ages, where cases were febrile individuals with a positive test and controls were individuals with a negative test. RESULTS: Across 12 months of surveillance, there were nine significant clusters that were identified using the spatial scan statistics among RDT positive fevers. These clusters included 52% of all fever positive RDT cases detected in 29% of the geocoded homesteads in the study area. When the resolution of the data was aggregated at enumeration zone (village) level the hotspots identified were located in the same areas. Only two of the nine hotspots were temporally stable accounting for 2.7% of the homesteads and included 10.8% of all fever positive RDT cases detected. CONCLUSION: Taking together the temporal instability of spatial hotspots and the relatively modest fraction of the malaria cases that they account for; it would seem inadvisable to re-design the sub-county control strategies around targeting hotspots.
Asunto(s)
Instituciones de Salud/estadística & datos numéricos , Malaria/epidemiología , Agrupamiento Espacio-Temporal , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Humanos , Lactante , Kenia/epidemiología , Masculino , Persona de Mediana Edad , Prevalencia , Adulto JovenRESUMEN
BACKGROUND: In 2015, pneumonia remained the leading cause of mortality in children aged 1-59 months. METHODS: Data from 1802 human immunodeficiency virus (HIV)-negative children aged 1-59 months enrolled in the Pneumonia Etiology Research for Child Health (PERCH) study with severe or very severe pneumonia during 2011-2014 were used to build a parsimonious multivariable model predicting mortality using backwards stepwise logistic regression. The PERCH severity score, derived from model coefficients, was validated on a second, temporally discrete dataset of a further 1819 cases and compared to other available scores using the C statistic. RESULTS: Predictors of mortality, across 7 low- and middle-income countries, were age <1 year, female sex, ≥3 days of illness prior to presentation to hospital, low weight for height, unresponsiveness, deep breathing, hypoxemia, grunting, and the absence of cough. The model discriminated well between those who died and those who survived (C statistic = 0.84), but the predictive capacity of the PERCH 5-stratum score derived from the coefficients was moderate (C statistic = 0.76). The performance of the Respiratory Index of Severity in Children score was similar (C statistic = 0.76). The number of World Health Organization (WHO) danger signs demonstrated the highest discrimination (C statistic = 0.82; 1.5% died if no danger signs, 10% if 1 danger sign, and 33% if ≥2 danger signs). CONCLUSIONS: The PERCH severity score could be used to interpret geographic variations in pneumonia mortality and etiology. The number of WHO danger signs on presentation to hospital could be the most useful of the currently available tools to aid clinical management of pneumonia.
Asunto(s)
Países en Desarrollo , Neumonía , Niño , Preescolar , Femenino , VIH , Hospitales , Humanos , Lactante , Neumonía/epidemiología , Índice de Severidad de la EnfermedadRESUMEN
BACKGROUND: The most widely used measures of declining burden of malaria across sub-Saharan Africa are predictions from geospatial models. These models apply spatiotemporal autocorrelations and covariates to parasite prevalence data and then use a function of parasite prevalence to predict clinical malaria incidence. We attempted to assess whether trends in malaria cases, based on local surveillance, were similar to those captured by Malaria Atlas Project (MAP) incidence surfaces. METHODS: We undertook a systematic review (PROSPERO International Prospective Register of Systematic Reviews; ID = CRD42019116834) to identify empirical data on clinical malaria in Africa since 2000, where reports covered at least 5 continuous years. The trends in empirical data were then compared with the trends of time-space matched clinical malaria incidence from MAP using the Spearman rank correlation. The correlations (rho) between changes in empirically observed and modelled estimates of clinical malaria were displayed by forest plots and examined by meta-regression. RESULTS: Sixty-seven articles met our inclusion criteria representing 124 sites from 24 African countries. The single most important factor explaining the correlation between empirical observations and modelled predictions was the slope of empirically observed data over time (rho = - 0.989; 95% CI - 0.998, - 0.939; p < 0.001), i.e. steeper declines were associated with a stronger correlation between empirical observations and modelled predictions. Factors such as quality of study, reported measure of malaria and endemicity were only slightly predictive of such correlations. CONCLUSIONS: In many locations, both local surveillance data and modelled estimates showed declines in malaria burden and hence similar trends. However, there was a weak association between individual surveillance datasets and the modelled predictions where stalling in progress or resurgence of malaria burden was empirically observed. Surveillance data were patchy, indicating a need for improved surveillance to strengthen both empiric reporting and modelled predictions.
Asunto(s)
Malaria/epidemiología , África del Sur del Sahara/epidemiología , Historia del Siglo XXI , Humanos , IncidenciaRESUMEN
BACKGROUND: Malaria transmission has recently fallen in many parts of Africa, but systematic descriptions of infection and disease across all age groups are rare. Here, an epidemiological investigation of parasite prevalence, the incidence of fevers associated with infection, severe hospitalized disease and mortality among children older than 6 months and adults on the Kenyan coast is presented. METHODS: A prospective fever surveillance was undertaken at 6 out-patients (OPD) health-facilities between March 2018 and February 2019. Four community-based, cross sectional surveys of fever history and infection prevalence were completed among randomly selected homestead members from the same communities. Paediatric and adult malaria at Kilifi county hospital was obtained for the 12 months period. Rapid Diagnostic Tests (CareStart™ RDT) to detect HRP2-specific to Plasmodium falciparum was used in the community and the OPD, and microscopy in the hospital. Crude and age-specific incidence rates were computed using Poisson regression. RESULTS: Parasite prevalence gradually increased from childhood, reaching 12% by 9 years of age then declining through adolescence into adulthood. The incidence rate of RDT positivity in the OPD followed a similar trend to that of infection prevalence in the community. The incidence of hospitalized malaria from the same community was concentrated among children aged 6 months to 4 years (i.e. 64% and 70% of all hospitalized and severe malaria during the 12 months of surveillance, respectively). Only 3.7% (12/316) of deaths were directly attributable to malaria. Malaria mortality was highest among children aged 6 months-4 years at 0.57 per 1000 person-years (95% CI 0.2, 1.2). Severe malaria and death from malaria was negligible above 15 years of age. CONCLUSION: Under conditions of low transmission intensity, immunity to disease and the fatal consequences of infection appear to continue to be acquired in childhood and faster than anti-parasitic immunity. There was no evidence of an emerging significant burden of severe malaria or malaria mortality among adults. This is contrary to current modelled approaches to disease burden estimation in Africa and has important implications for the targeting of infection prevention strategies based on chemoprevention or vector control.
Asunto(s)
Fiebre/epidemiología , Hospitalización/estadística & datos numéricos , Malaria/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Estudios Transversales , Femenino , Fiebre/etiología , Humanos , Incidencia , Lactante , Kenia/epidemiología , Malaria/mortalidad , Malaria/parasitología , Masculino , Persona de Mediana Edad , Prevalencia , Estudios Prospectivos , Adulto JovenRESUMEN
BACKGROUND: Understanding the relationship between malaria infection risk and disease outcomes represents a fundamental component of morbidity and mortality burden estimations. Contemporary data on severe malaria risks among populations of different parasite exposures are scarce. Using surveillance data, we compared rates of paediatric malaria hospitalisation in areas of varying parasite exposure levels. METHODS: Surveillance data at five public hospitals; Jinja, Mubende, Kabale, Tororo, and Apac were assembled among admissions aged 1 month to 14 years between 2017 and 2018. The address of each admission was used to define a local catchment population where national census data was used to define person-year-exposure to risk. Within each catchment, historical infection prevalence was assembled from previously published data and current infection prevalence defined using 33 population-based school surveys among 3400 children. Poisson regression was used to compute the overall and site-specific incidences with 95% confidence intervals. RESULTS: Both current and historical Plasmodium falciparum prevalence varied across the five sites. Current prevalence ranged from < 1% in Kabale to 54% in Apac. Overall, the malaria admission incidence rate (IR) was 7.3 per 1000 person years among children aged 1 month to 14 years of age (95% CI: 7.0, 7.7). The lowest rate was described at Kabale (IR = 0.3; 95 CI: 0.1, 0.6) and highest at Apac (IR = 20.3; 95 CI: 18.9, 21.8). There was a correlation between IR across the five sites and the current parasite prevalence in school children, though findings were not statistically significant. Across all sites, except Kabale, malaria admissions were concentrated among young children, 74% were under 5 years. The median age of malaria admissions at Kabale hospital was 40 months (IQR 20, 72), and at Apac hospital was 36 months (IQR 18, 69). Overall, severe anaemia (7.6%) was the most common presentation and unconsciousness (1.8%) the least common. CONCLUSION: Malaria hospitalisation rates remain high in Uganda particularly among young children. The incidence of hospitalized malaria in different locations in Uganda appears to be influenced by past parasite exposure, immune acquisition, and current risks of infection. Interruption of transmission through vector control could influence age-specific severe malaria risk.
Asunto(s)
Anemia/etiología , Hospitalización , Hospitales Pediátricos , Malaria/complicaciones , Malaria/epidemiología , Plasmodium falciparum/inmunología , Inconsciencia/etiología , Adolescente , Factores de Edad , Niño , Preescolar , Femenino , Hospitales Públicos , Humanos , Incidencia , Lactante , Malaria/parasitología , Malaria/transmisión , Masculino , Morbilidad , Plasmodium falciparum/aislamiento & purificación , Prevalencia , Estudios Retrospectivos , Uganda/epidemiologíaRESUMEN
The Pneumonia Etiology Research for Child Health (PERCH) study is the largest multicountry etiology study of pediatric pneumonia undertaken in the past 3 decades. The study enrolled 4232 hospitalized cases and 5325 controls over 2 years across 9 research sites in 7 countries in Africa and Asia. The volume and complexity of data collection in PERCH presented considerable logistical and technical challenges. The project chose an internet-based data entry system to allow real-time access to the data, enabling the project to monitor and clean incoming data and perform preliminary analyses throughout the study. To ensure high-quality data, the project developed comprehensive quality indicator, data query, and monitoring reports. Among the approximately 9000 cases and controls, analyzable laboratory results were available for ≥96% of core specimens collected. Selected approaches to data management in PERCH may be extended to the planning and organization of international studies of similar scope and complexity.
Asunto(s)
Exactitud de los Datos , Recolección de Datos , Sistemas de Administración de Bases de Datos , Neumonía/diagnóstico , Neumonía/etiología , África , Asia , Estudios de Casos y Controles , Niño , Técnicas de Laboratorio Clínico , Humanos , Internacionalidad , Neumonía Bacteriana/diagnóstico , Neumonía Viral/diagnósticoRESUMEN
BACKGROUND: Malaria transmission intensity is heterogeneous, complicating the implementation of malaria control interventions. We provide a description of the spatial micro-epidemiology of symptomatic malaria and asymptomatic parasitaemia in multiple sites. METHODS: We assembled data from 19 studies conducted between 1996 and 2015 in seven countries of sub-Saharan Africa with homestead-level geospatial data. Data from each site were used to quantify spatial autocorrelation and examine the temporal stability of hotspots. Parameters from these analyses were examined to identify trends over varying transmission intensity. RESULTS: Significant hotspots of malaria transmission were observed in most years and sites. The risk ratios of malaria within hotspots were highest at low malaria positive fractions (MPFs) and decreased with increasing MPF (p < 0.001). However, statistical significance of hotspots was lowest at extremely low and extremely high MPFs, with a peak in statistical significance at an MPF of ~0.3. In four sites with longitudinal data we noted temporal instability and variable negative correlations between MPF and average age of symptomatic malaria across all sites, suggesting varying degrees of temporal stability. CONCLUSIONS: We observed geographical micro-variation in malaria transmission at sites with a variety of transmission intensities across sub-Saharan Africa. Hotspots are marked at lower transmission intensity, but it becomes difficult to show statistical significance when cases are sparse at very low transmission intensity. Given the predictability with which hotspots occur as transmission intensity falls, malaria control programmes should have a low threshold for responding to apparent clustering of cases.
Asunto(s)
Malaria/transmisión , África del Sur del Sahara , Análisis por Conglomerados , Humanos , Malaria/epidemiología , Malaria/prevención & control , Oportunidad RelativaRESUMEN
BACKGROUND: Use of bednets reduces malaria morbidity and mortality. In Kilifi, Kenya, there was a mass distribution of free nets to children < 5 years in 2006. In 2009, a new policy was implemented to offer bednets to pregnant women and children < 5 years free of charge. Nets were again distributed to children and adults through national mass campaigns in 2012 and 2015. We aimed to evaluate trends in bednet ownership and usage, and the effect of bednets on the incidence of malaria hospitalization in children < 5 years within the Kilifi Health and Demographic Surveillance System (KHDSS). METHODS: Bednet ownership and usage were assessed during eight routine enumeration rounds of the KHDSS between 2008 and 2015. Malaria admissions (i.e. admissions to hospital with P. falciparum > 2500 parasitemia per µl) among children < 5 years were captured using a system of continuous vital registration that links admissions at Kilifi County Hospital to the KHDSS population register. Survival analysis was used to assess relative risk of hospitalization with malaria among children that reported using a bednet compared to those who did not. RESULTS: We observed 63% and 62% mean bednet ownership and usage, respectively, over the eight-survey period. Among children < 5 years, reported bednet ownership in October-December 2008 was 69% and in March-August 2009 was 73% (p < 0.001). An increase was also observed following the mass distribution campaigns in 2012 (62% in May-July 2012 vs 90% in May-October 2013, p < 0.001) and 2015 (68% in June-September 2015 vs 93% in October-November 2015, p < 0.001). Among children <5 years who reported using a net the night prior to the survey, the incidence of malaria hospitalization per 1000 child-years was 2.91 compared to 4.37 among those who did not (HR = 0.67, 95% CI: 0.52, 0.85 [p = 0.001]). CONCLUSION: On longitudinal surveillance, increasing bednet ownership and usage corresponded to mass distribution campaigns; however, this method of delivering bednets did not result in sustained improvements in coverage. Among children < 5 years old bednet use was associated with a 33% decreased incidence of malaria hospitalization.
Asunto(s)
Mosquiteros Tratados con Insecticida/tendencias , Malaria/epidemiología , Adolescente , Niño , Preescolar , Femenino , Encuestas Epidemiológicas , Hospitalización , Humanos , Incidencia , Lactante , Recién Nacido , Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Kenia/epidemiología , Malaria/mortalidad , Malaria/prevención & control , Masculino , Riesgo , Estaciones del Año , Análisis de SupervivenciaRESUMEN
BACKGROUND: Lymphatic filariasis (LF) is an infectious neglected tropical disease caused by mosquito-borne nematodes such as Wuchereria bancrofti, Brugia malayi, and Brugia timori. Globally, LF affects 51 million people, with approximately 863 million at risk in 47 countries. In Kenya, filariasis is endemic along the entire coastal strip, and more recently, at the Kenya-Ugandan border. The World Health Organization (WHO) recommends mass drug administration to reduce disease transmission and morbidity. Monitoring the effectiveness of such interventions relies on robust surveillance, achieved through microscopic examination of microfilariae in nighttime blood, detection of circulating filarial antigens (CFA), and molecular xenomonitoring. We focused on molecular xenomonitoring along the Kenyan coast due to its noninvasive nature and the opportunity to identify new vectors. METHODS: In 2022, mosquitoes were collected from Kilifi, Kwale, and Taita-Taveta counties located within the LF endemic region in Kenya. Subsequently, genomic deoxyribonucleic acid (gDNA) was extracted from these mosquitoes for speciation and analysis of Wuchereria bancrofti infection rates. The impact of sociodemographic and household attributes on infection rates was assessed using generalized estimating equations. RESULTS: A total of 18,121 mosquitoes belonging to Culicinae (63.0%, n = 11,414) and Anophelinae (37.0%, n = 6707) subfamilies were collected. Morphological identification revealed that Anopheline mosquitoes were dominated by An. funestus (45.4%, n = 3045) and An. gambiae (42.8%, n = 2873). Wuchereria bancrofti infection rates were highest in Kilifi (35.4%; 95% CI 28.0-43.3%, n = 57/161) and lowest in Taita Taveta (5.3%; 95% CI 3.3-8.0%, n = 22/412). The major vectors incriminated are An. rivulorum, An. funestus sensu stricto, and An. arabiensis. Mosquitoes of the An. funestus complex were significantly associated with LF transmission (OR 18.0; 95% CI 1.80-180; p = 0.014). Additionally, a higher risk of transmission was observed outdoors (OR 1.74; 95% CI 1.08-2.82; p = 0.024) and in homesteads that owned livestock (OR 2.00; 95% CI 1.09-3.66; p = 0.025). CONCLUSIONS: In this study, we identified An. funestus s.l. sibling species, An. rivulorum and An. funestus s.s., as the primary vectors of lymphatic filariasis along the Kenyan coast. These findings also highlight that a significant portion of disease transmission potentially occurs outdoors where indoor-based vector control tools, including long-lasting insecticidal nets and indoor residual spray, may not be effective. Therefore, control measures targeting outdoor resting mosquitoes such as zooprophylaxis, larval source management, and attractive sugar baits may have potential for LF transmission reduction.
Asunto(s)
Anopheles , Filariasis Linfática , Mosquitos Vectores , Wuchereria bancrofti , Animales , Kenia/epidemiología , Filariasis Linfática/transmisión , Filariasis Linfática/epidemiología , Filariasis Linfática/parasitología , Anopheles/parasitología , Anopheles/clasificación , Mosquitos Vectores/parasitología , Mosquitos Vectores/clasificación , Wuchereria bancrofti/aislamiento & purificación , Wuchereria bancrofti/genética , Humanos , Femenino , MasculinoRESUMEN
In malaria epidemiology, interpolation frameworks based on available observations are critical for policy decisions and interpreting disease burden. Updating our understanding of the empirical evidence across different populations, settings, and timeframes is crucial to improving inference for supporting public health. Here, via individual-based modeling, we evaluate a large, multicountry, contemporary Plasmodium falciparum severe malaria dataset to better understand the relationship between prevalence and incidence of malaria pediatric hospitalizations - a proxy of malaria severe outcomes- in East-Africa. We find that life-long exposure dynamics, and subsequent protection patterns in children, substantially determine the likelihood of malaria hospitalizations relative to ongoing prevalence at the population level. Unsteady transmission patterns over a lifetime in children -increasing or decreasing- lead to an exponential relationship of hospitalization rates versus prevalence rather than the asymptotic pattern observed under steady transmission. Addressing this increase in the complexity of malaria epidemiology is crucial to update burden assessments via inference models that guide current and future policy decisions.
Asunto(s)
Hospitalización , Malaria Falciparum , Humanos , Malaria Falciparum/epidemiología , Malaria Falciparum/transmisión , Malaria Falciparum/parasitología , Niño , Prevalencia , Preescolar , Hospitalización/estadística & datos numéricos , Lactante , Incidencia , Plasmodium falciparum , Femenino , Masculino , AdolescenteRESUMEN
BACKGROUND: Anaemia and malaria are leading causes of paediatric hospitalisation and inpatient mortality in sub-Saharan Africa. However, there is limited empirical data on survival following hospital discharge. We aimed to estimate independent effects of anaemia and malaria parasitaemia on inpatient and 1 year postdischarge mortality among Kenyan children. METHODS: A retrospective cohort study among children admitted to Kilifi County Hospital (KCH) from 2010 to 2019 and followed-up for 1 year postdischarge in Kilifi Health and Demographic Surveillance System (KHDSS). The main exposures were anaemia and malaria parasitaemia at the time of hospital admission while inpatient and 1 year postdischarge mortality were the outcomes. RESULTS: We included 9431 admissions among 7578 children (43% girls), median (IQR) age 19 (9.9â23) months. 2069 (22%), 3893 (41%) and 1140 (12%) admissions had mild, moderate and severe anaemia, whereas 366 (3.9%), 779 (8.3%) and 224 (2.4%) had low, medium and high malaria parasitaemia, respectively. Overall, there were 381 (4.0%) inpatient deaths: 317/381 (83%) and 47/381 (12%) among children with any level of anaemia and malaria parasitaemia, respectively. Moderate and severe, but not mild anaemia, were positively associated with inpatient death. Low and high level parasitaemia were positively associated with inpatient mortality, while medium level parasitaemia was negatively associated. There were 228 (3.1%) postdischarge deaths: 32.8 (95% CI 28.8â37.3) deaths/1000 child-years. 180/228 (79%) deaths occurred within 6 months after index discharge and 99/228 (43%) occurred in the community. Overall, 180/228 (79%) and 10/228 (4.4%) postdischarge deaths occurred among children with any level of anaemia and malaria parasitaemia, respectively. Severe anaemia was positively associated with postdischarge mortality (adjusted HR 1.94 (95% CI 1.11â3.40)), while medium level parasitaemia was negatively associated. CONCLUSION: Interventions to create awareness of postdischarge risks, improve uptake of existing interventions and improved discharge processes targeting high-risk groups such as children admitted with severe anaemia, need to be prioritised.
Asunto(s)
Anemia , Malaria , Humanos , Kenia/epidemiología , Anemia/mortalidad , Anemia/epidemiología , Femenino , Masculino , Malaria/mortalidad , Lactante , Estudios Retrospectivos , Preescolar , Alta del Paciente/estadística & datos numéricos , Parasitemia/mortalidad , Mortalidad Hospitalaria , Hospitalización/estadística & datos numéricos , Estudios de Cohortes , Niño , Mortalidad del NiñoRESUMEN
INTRODUCTION: In 2012, the World Health Organization revised treatment guidelines for childhood pneumonia with lower chest wall indrawing (LCWI) but no 'danger signs', to recommend home-based treatment. We analysed data from children hospitalized with LCWI pneumonia in the Pneumonia Etiology Research for Child Health (PERCH) study to identify sub-groups with high odds of mortality, who might continue to benefit from hospital management but may not be admitted by staff implementing the 2012 guidelines. We compare the proportion of deaths identified using the criteria in the 2012 guidelines, and the proportion of deaths identified using an alternative set of criteria from our model. METHODS: PERCH enrolled a cohort of 2189 HIV-negative children aged 2-59 months who were admitted to hospital with LCWI pneumonia (without obvious cyanosis, inability to feed, vomiting, convulsions, lethargy or head nodding) between 2011-2014 in Kenya, Zambia, South Africa, Mali, The Gambia, Bangladesh, and Thailand. We analysed risk factors for mortality among these cases using predictive logistic regression. Malnutrition was defined as mid-upper-arm circumference <125mm or weight-for-age z-score <-2. RESULTS: Among 2189 cases, 76 (3·6%) died. Mortality was associated with oxygen saturation <92% (aOR 3·33, 1·99-5·99), HIV negative but exposed status (4·59, 1·81-11·7), moderate or severe malnutrition (6·85, 3·22-14·6) and younger age (infants compared to children 12-59 months old, OR 2·03, 95%CI 1·05-3·93). At least one of three risk factors: hypoxaemia, HIV exposure, or malnutrition identified 807 children in this population, 40% of LCWI pneumonia cases and identified 86% of the children who died in hospital (65/76). Risk factors identified using the 2012 WHO treatment guidelines identified 66% of the children who died in hospital (n = 50/76). CONCLUSIONS: Although it focuses on treatment failure in hospital, this study supports the proposal for better risk stratification of children with LCWI pneumonia. Those who have hypoxaemia, any malnutrition or those who were born to HIV positive mothers, experience poorer outcomes than other children with LCWI pneumonia. Consistent identification of these risk factors should be prioritised and children with at least one of these risk factors should not be managed in the community.
Asunto(s)
Infecciones por VIH , Desnutrición , Neumonía , Lactante , Niño , Humanos , Preescolar , Neumonía/epidemiología , Hospitalización , Desnutrición/complicaciones , Infecciones por VIH/complicaciones , Hipoxia/etiologíaRESUMEN
BACKGROUND: A study was conducted to examine the impact of long-lasting insecticide-treated net (LLIN) use on the prevalence of malaria infections across all ages, 25 y after a trial of insecticide-treated nets was conducted in the same area along the Kenyan coast. METHODS: The study comprised four community-based infection surveys and a simultaneous 12-month surveillance at six government outpatient health facilities (March 2018-February 2019). Logistic regression was used to examine the effect of LLIN use on malaria infections across all ages. RESULTS: There was a high level of reported LLIN use by the community (72%), notably among children <5 y of age (84%). Across all ages, the adjusted odds ratio of LLIN use against asymptomatic parasitaemia in community surveys was 0.45 (95% confidence interval [CI] 0.36 to 0.57; p<0.001) and against fevers associated with infection presenting to health facilities was 0.63 (95% CI 0.58 to 0.68; p<0.001). CONCLUSIONS: There was significant protection of LLIN use against malaria infections across all ages.
Asunto(s)
Mosquiteros Tratados con Insecticida , Malaria , Humanos , Kenia/epidemiología , Malaria/epidemiología , Malaria/prevención & control , Control de MosquitosRESUMEN
The High Burden High Impact (HBHI) strategy for malaria encourages countries to use multiple sources of available data to define the sub-national vulnerabilities to malaria risk, including parasite prevalence. Here, a modelled estimate of Plasmodium falciparum from an updated assembly of community parasite survey data in Kenya, mainland Tanzania, and Uganda is presented and used to provide a more contemporary understanding of the sub-national malaria prevalence stratification across the sub-region for 2019. Malaria prevalence data from surveys undertaken between January 2010 and June 2020 were assembled form each of the three countries. Bayesian spatiotemporal model-based approaches were used to interpolate space-time data at fine spatial resolution adjusting for population, environmental and ecological covariates across the three countries. A total of 18,940 time-space age-standardised and microscopy-converted surveys were assembled of which 14,170 (74.8%) were identified after 2017. The estimated national population-adjusted posterior mean parasite prevalence was 4.7% (95% Bayesian Credible Interval 2.6-36.9) in Kenya, 10.6% (3.4-39.2) in mainland Tanzania, and 9.5% (4.0-48.3) in Uganda. In 2019, more than 12.7 million people resided in communities where parasite prevalence was predicted ≥ 30%, including 6.4%, 12.1% and 6.3% of Kenya, mainland Tanzania and Uganda populations, respectively. Conversely, areas that supported very low parasite prevalence (<1%) were inhabited by approximately 46.2 million people across the sub-region, or 52.2%, 26.7% and 10.4% of Kenya, mainland Tanzania and Uganda populations, respectively. In conclusion, parasite prevalence represents one of several data metrics for disease stratification at national and sub-national levels. To increase the use of this metric for decision making, there is a need to integrate other data layers on mortality related to malaria, malaria vector composition, insecticide resistance and bionomic, malaria care-seeking behaviour and current levels of unmet need of malaria interventions.
RESUMEN
The relationship between community prevalence of Plasmodium falciparum and the burden of severe, life-threatening disease remains poorly defined. To examine the three most common severe malaria phenotypes from catchment populations across East Africa, we assembled a dataset of 6506 hospital admissions for malaria in children aged 3 months to 9 years from 2006 to 2020. Admissions were paired with data from community parasite infection surveys. A Bayesian procedure was used to calibrate uncertainties in exposure (parasite prevalence) and outcomes (severe malaria phenotypes). Each 25% increase in prevalence conferred a doubling of severe malaria admission rates. Severe malaria remains a burden predominantly among young children (3 to 59 months) across a wide range of community prevalence typical of East Africa. This study offers a quantitative framework for linking malaria parasite prevalence and severe disease outcomes in children.
Asunto(s)
Malaria Falciparum/epidemiología , Plasmodium falciparum , África Oriental/epidemiología , Factores de Edad , Teorema de Bayes , Niño , Preescolar , Monitoreo Epidemiológico , Hospitalización , Humanos , Incidencia , Lactante , Malaria Cerebral/epidemiología , Malaria Falciparum/prevención & control , Malaria Falciparum/transmisión , Modelos Estadísticos , Prevalencia , Factores de Riesgo , Índice de Severidad de la EnfermedadRESUMEN
BACKGROUND: In the 1980s, Streptococcus pneumoniae and Haemophilus influenzae were identified as the principal causes of severe pneumonia in children. We investigated the etiology of severe childhood pneumonia in Kenya after introduction of conjugate vaccines against H. influenzae type b, in 2001, and S. pneumoniae, in 2011. METHODS: We conducted a case-control study between August 2011 and November 2013 among residents of the Kilifi Health and Demographic Surveillance System 28 days to 59 months of age. Cases were hospitalized at Kilifi County Hospital with severe or very severe pneumonia according to the 2005 World Health Organization definition. Controls were randomly selected from the community and frequency matched to cases on age and season. We tested nasal and oropharyngeal samples, sputum, pleural fluid, and blood specimens and used the Pneumonia Etiology Research for Child Health Integrated Analysis, combining latent class analysis and Bayesian methods, to attribute etiology. RESULTS: We enrolled 630 and 863 HIV-uninfected cases and controls, respectively. Among the cases, 282 (44%) had abnormal chest radiographs (CXR positive), 33 (5%) died in hospital, and 177 (28%) had diagnoses other than pneumonia at discharge. Among CXR-positive pneumonia cases, viruses and bacteria accounted for 77% (95% CrI: 67%-85%) and 16% (95% CrI: 10%-26%) of pneumonia attribution, respectively. Respiratory syncytial virus, S. pneumoniae and H. influenza, accounted for 37% (95% CrI: 31%-44%), 5% (95% CrI: 3%-9%), and 6% (95% CrI: 2%-11%), respectively. CONCLUSIONS: Respiratory syncytial virus was the main cause of CXR-positive pneumonia. The small contribution of H. influenzae type b and pneumococcus to pneumonia may reflect the impact of vaccine introductions in this population.