Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38888593

RESUMEN

A novel bacterial strain, designated as MAH-18T, was isolated from soil sampled in a flower garden. Cells of strain MAH-18T were Gram-stain-positive, aerobic, motile, and rod-shaped. The colonies were beige in colour, smooth, and spherical when grown on Reasoner's 2A agar medium. Strain MAH-18T grew at 20-40 °C, pH 6.0-8.0, and 0-1.0 % NaCl. Cells were able to hydrolyse aesculin, gelatin, and Tween 20. According to the 16S rRNA gene sequence comparisons, the isolate was determined to be a member of the genus Nocardioides and most closely related to Nocardioides pyridinolyticus OS4T (97.9 %), Nocardioides hankookensis DS-30T (97.9 %), Nocardioides aquiterrae GW-9T (97.6 %), Nocardioides soli mbc-2T (97.5 %), Nocardioides conyzicola HWE 2-02T (97.4 %), and Nocardioides mangrovi GBK3QG-3T (96.3 %). Strain MAH-18T has a draft genome size of 4 788 325 bp (eight contigs), 4572 protein-coding genes, 46 tRNA, and three rRNA genes. The average nucleotide identity and digital DNA-DNA hybridization values between strain MAH-18T and the closest type strains were 81.5-83.4 % and 24.4-25.8 %, respectively. In silico genome mining revealed several biosynthetic gene clusters in the genome of the novel strain MAH-18T. The G+C content of the genomic DNA of strain was 72.2 mol% and the predominant isoprenoid quinone was MK-8 (H4). The main polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, and unknown phospholipids. The major cellular fatty acids were determined to be C16:0 iso and C17 : 1 ω6c. The DNA-DNA hybridization results and phenotypic, genotypic, and chemotaxonomic data demonstrated that strain MAH-18T represents a novel species, for which the name Nocardioides agri sp. nov. is proposed, with MAH-18T as the type strain (=KACC 19744T=CGMCC 1.13656T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Microbiología del Suelo , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Actinomycetales/aislamiento & purificación , Actinomycetales/clasificación , Actinomycetales/genética , Genoma Bacteriano , Jardines , Fosfolípidos
2.
Int J Mol Sci ; 25(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38791150

RESUMEN

Tomatoes contain many secondary metabolites such as ß-carotene, lycopene, phenols, flavonoids, and vitamin C, which are responsible for antioxidant activity. SlSGR1 encodes a STAY-GREEN protein that plays a critical role in the regulation of chlorophyll degradation in tomato leaves and fruits. Therefore, the present study was conducted to evaluate the sgr1 null lines based on their physicochemical characteristics, the content of secondary metabolites, and the γ-Aminobutyric acid (GABA) content. The total soluble solids (TSS), titrated acidity (TA), and brix acid ratio (BAR) of the sgr1 null lines were higher than those of the wild type(WT). Additionally, the sgr1 null lines accumulated higher levels of flavor-inducing ascorbic acid and total carotenoids compared to WT. Also, the total phenolic content, total flavonoids, GABA content, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical content of the sgr1 null lines were higher than those of the WT. Therefore, these studies suggest that the knockout of the SGR1 gene by the CRISPR/Cas9 system can improve various functional compounds in tomato fruit, thereby satisfying the antioxidant properties required by consumers.


Asunto(s)
Antioxidantes , Sistemas CRISPR-Cas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Antioxidantes/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Edición Génica/métodos , Técnicas de Inactivación de Genes , Carotenoides/metabolismo , Fenoles/metabolismo , Ácido Ascórbico/metabolismo , Frutas/genética , Frutas/metabolismo , Frutas/química , Flavonoides/metabolismo , Ácido gamma-Aminobutírico/metabolismo
3.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38003586

RESUMEN

Genome-editing technology is a type of genetic engineering in which DNA is inserted into, replaced in, or deleted from the genome using artificially engineered nucleases or genetic scissors [...].


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Plantas/genética , Ingeniería Genética , Genoma de Planta
4.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36982409

RESUMEN

Plants produce and accumulate stress-resistant substances when exposed to abiotic stress, which involves a protein conversion mechanism that breaks down stress-damaged proteins and supplies usable amino acids. Eukaryotic protein turnover is mostly driven by the ubiquitination pathway. Among the three enzymes required for protein degradation, E3 ubiquitin ligase plays a pivotal role in most cells, as it determines the specificity of ubiquitination and selects target proteins for degradation. In this study, to investigate the function of OsPUB7 (Plant U-box gene in Oryza sativa), we constructed a CRISPR/Cas9 vector, generated OsPUB7 gene-edited individuals, and evaluated resistance to abiotic stress using gene-edited lines. A stress-tolerant phenotype was observed as a result of drought and salinity stress treatment in the T2OsPUB7 gene-edited null lines (PUB7-GE) lacking the T-DNA. In addition, although PUB7-GE did not show any significant change in mRNA expression analysis, it showed lower ion leakage and higher proline content than the wild type (WT). Protein-protein interaction analysis revealed that the expression of the genes (OsPUB23, OsPUB24, OsPUB66, and OsPUB67) known to be involved in stress increased in PUB7-GE and this, by forming a 1-node network with OsPUB66 and OsPUB7, acted as a negative regulator of drought and salinity stress. This result provides evidence that OsPUB7 will be a useful target for both breeding and future research on drought tolerance/abiotic stress in rice.


Asunto(s)
Oryza , Oryza/metabolismo , Sistemas CRISPR-Cas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Fitomejoramiento , Estrés Fisiológico/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Sequías
5.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36613549

RESUMEN

Stay-green 1 (SGR1) protein is a critical regulator of chlorophyll degradation and senescence in plant leaves; however, the functions of tomato SGR1 remain ambiguous. Here, we generated an SGR1-knockout (KO) null line via clustered regularly interspaced palindromic repeat (CRISPR)/CRISPR-associated protein 9-mediated gene editing and conducted RNA sequencing and gas chromatography−tandem mass spectrometry analysis to identify the differentially expressed genes (DEGs). Solanum lycopersicum SGR1 (SlSGR1) knockout null line clearly showed a turbid brown color with significantly higher chlorophyll and carotenoid levels than those in the wild-type (WT) fruit. Differential gene expression analysis revealed 728 DEGs between WT and sgr#1-6 line, including 263 and 465 downregulated and upregulated genes, respectively, with fold-change >2 and adjusted p-value < 0.05. Most of the DEGs have functions related to photosynthesis, chloroplasts, and carotenoid biosynthesis. The strong changes in pigment and carotenoid content resulted in the accumulation of key primary metabolites, such as sucrose and its derivatives (fructose, galactinol, and raffinose), glycolytic intermediates (glucose, glucose-6-phosphate, and fructose-6-phosphate), and tricarboxylic acid cycle intermediates (malate and fumarate) in the leaves and fruit of the SGR-KO null lines. Overall, the SGR1-KO null lines developed here provide new evidence for the mechanisms underlying the roles of SGR1 as well as the molecular pathways involved in photosynthesis, chloroplasts, and carotenoid biosynthesis.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Transcriptoma , Sistemas CRISPR-Cas/genética , Cromatografía de Gases y Espectrometría de Masas , Carotenoides/metabolismo , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36142294

RESUMEN

Lycopene epsilon-cyclase (LcyE) is a key enzyme in the carotenoid biosynthetic pathway of higher plants. Using the CRSPR/Cas9 and the geminiviral replicon, we optimized a method for targeted mutagenesis and golden SNP replacement of the LcyE gene in rice. We have exploited the geminiviral replicon amplification as a means to provide a large amount of donor template for the repair of a CRISPR-Cas-induced DNA double-strand break (DSB) in the target gene via homology-directed repair (HDR). Mutagenesis experiments performed on the Donggin variety achieved precise modification of the LcyE loci with an efficiency of up to 90%. In HDR experiments, our target was the LcyE allele (LcyE-H523L) derived from anther culture containing a golden SNP replacement. The phenotype of the homologous recombination (HR) mutant obtained through the geminiviral replicon-based template delivery system was tangerine color, and the frequency was 1.32% of the transformed calli. In addition, the total carotenoid content of the LcyEsg2-HDR1 and LcyEsg2-HDR2 lines was 6.8-9.6 times higher than that of the wild-type (WT) calli, respectively. The reactive oxygen species content was lower in the LcyEsg2-HDR1 and LcyEsg2-HDR2 lines. These results indicate that efficient HDR can be achieved in the golden SNP replacement using a single and modular configuration applicable to different rice targets and other crops. This work demonstrates the potential to replace all genes with elite alleles within one generation and greatly expands our ability to improve agriculturally important traits.


Asunto(s)
Edición Génica , Oryza , Sistemas CRISPR-Cas , Carotenoides , ADN , Edición Génica/métodos , Liasas Intramoleculares , Oryza/genética , Especies Reactivas de Oxígeno , Replicón/genética
7.
Molecules ; 27(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36557874

RESUMEN

Tomato is a widely distributed, cultivated, and commercialized vegetable crop. It contains antioxidant constituents including lycopene, tocopherols, vitamin C, γ-aminobutyric acid, phenols, and flavonoids. This study determined the contents of the antioxidant components and activities of the pulp with skin of ten regular, six medium-sized, and two small cherry tomato cultivars at red ripe (BR + 10) stage cultivated in Korea. The relationships among the Hunter color coordinates, the content of each component, and antioxidant activities were measured by Pearson's correlation coefficients. As the a* value increased, the carotenoid and vitamin C contents increased, while the L* value, hue angle and tocopherol content decreased. As the b* value increased, the lycopene and total carotenoid contents decreased, and the flavonoid content in the hydrophilic extracts increased. The contents of vitamin C and total carotenoids including lycopene showed high positive correlations with the DPPH radical scavenging activities of both the lipophilic and hydrophilic extracts. Tocopherols and total phenolics in the hydrophilic and lipophilic extracts were not major positive contributors to the antioxidant activity. These findings suggest the quality standards for consumer requirements and inputs for on-going research for the development of better breeds.


Asunto(s)
Antioxidantes , Solanum lycopersicum , Antioxidantes/química , Licopeno , Fitomejoramiento , Carotenoides/química , Ácido Ascórbico , Tocoferoles , Flavonoides/química , Fenoles/análisis , Vitaminas , República de Corea
8.
New Phytol ; 230(4): 1503-1516, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33570747

RESUMEN

The tight regulation of local auxin homeostasis and signalling maxima in xylem precursor cells specifies the organising activity of the vascular cambium and consequently promotes xylem differentiation and wood formation. However, the molecular mechanisms underlying the local auxin signalling maxima in the vascular cambium are largely unknown. Here, we reveal that brassinosteroid (BR)-activated WALLS ARE THIN1 (WAT1) facilitates wood formation by enhancing local auxin signalling in the vascular cambium in Solanum lycopersicum. Growth defects and low auxin signalling readouts in the BR-deficient tomato cultivar, Micro-Tom, were associated with a novel recessive allele, Slwat1-copi, created by the insertion of a retrotransposon in the last exon of the SlWAT1 locus. Molecular and genetic studies by generating the gain-of-function and loss-of-function tomato mutants revealed that SlWAT1 is a critical regulator for fine tuning local auxin homeostasis and signalling outputs in vascular cambium to facilitate secondary growth. Finally, we discovered that BR-regulated SlBZR1/2 directly activated downstream auxin responses by SlWAT1 upregulation in xylem precursor cells to facilitate xylem differentiation and subsequent wood formation. Our data suggest that the BR-SlBZR1/2-WAT1 signalling network contributes to the high level of auxin signalling in the vascular cambium for secondary growth.


Asunto(s)
Brasinoesteroides , Cámbium , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Madera/metabolismo , Xilema/metabolismo
9.
Plant Cell Rep ; 40(6): 1013-1024, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32980909

RESUMEN

KEY MESSAGE: The altered rice leaf color based on the knockout of CAO1 gene generated using CRISPR/Cas9 technology plays important roles in chlorophyll degradation and ROS scavenging to regulate both natural and induced senescence in rice. Rice chlorophyllide a oxygenase (OsCAO1), identified as the chlorophyll b synthesis under light condition, plays a critical role in regulating rice plant photosynthesis. In this study, the development of edited lines with pale green leaves by knockout of OsCAO1 gene known as a chlorophyll synthesis process is reported. Eighty-one genetically edited lines out of 181 T0 plants were generated through CRISPR/Cas9 system. The edited lines have short narrow flag leaves and pale green leaves compared with wild-type 'Dongjin' plants (WT). Additionally, edited lines have lower chlorophyll b and carotenoid contents both at seedling and mature stages. A transcriptome analysis identified 580 up-regulated and 206 downregulated genes in the edited lines. The differentially expressed genes (DEGs) involved in chlorophyll biosynthesis, magnesium chelatase subunit (CHLH), and glutamate-1-semialdehyde2, 1-aminomutase (GSA) metabolism decreased significantly. Meanwhile, the gel consistency (GC) levels of rice grains, chalkiness ratios and chalkiness degrees (CD) decreased in the edited lines. Thus, knockout of OsCAO1 influenced growth period, leaf development and grain quality characters of rice. Overall, the result suggests that OsCAO1 also plays important roles in chlorophyll degradation and ROS scavenging to regulate both natural and induced rice senescence.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes/métodos , Oryza/fisiología , Clorofila/biosíntesis , Clorofila/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Homocigoto , Tasa de Mutación , Oryza/genética , Fenotipo , Plantas Modificadas Genéticamente
10.
Int J Mol Sci ; 22(21)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34769518

RESUMEN

Proteins encoded by U-box type ubiquitin ligase (PUB) genes in rice are known to play an important role in plant responses to abiotic and biotic stresses. Functional analysis has revealed a detailed molecular mechanism involving PUB proteins in relation to abiotic and biotic stresses. In this study, characteristics of 77 OsPUB genes in rice were identified. Systematic and comprehensive analyses of the OsPUB gene family were then performed, including analysis of conserved domains, phylogenetic relationships, gene structure, chromosome location, cis-acting elements, and expression patterns. Through transcriptome analysis, we confirmed that 16 OsPUB genes show similar expression patterns in drought stress and blast infection response pathways. Numerous cis-acting elements were found in promoter sequences of 16 OsPUB genes, indicating that the OsPUB genes might be involved in complex regulatory networks to control hormones, stress responses, and cellular development. We performed qRT-PCR on 16 OsPUB genes under drought stress and blast infection to further identify the reliability of transcriptome and cis-element analysis data. It was confirmed that the expression pattern was similar to RNA-sequencing analysis results. The transcription of OsPUB under various stress conditions indicates that the PUB gene might have various functions in the responses of rice to abiotic and biotic stresses. Taken together, these results indicate that the genome-wide analysis of OsPUB genes can provide a solid basis for the functional analysis of U-box E3 ubiquitin ligase genes. The molecular information of the U-box E3 ubiquitin ligase gene family in rice, including gene expression patterns and cis-acting regulatory elements, could be useful for future crop breeding programs by genome editing.


Asunto(s)
Oryza/enzimología , Oryza/genética , Proteínas de Plantas/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Sequías , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Filogenia , Fitomejoramiento , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Estrés Fisiológico , Transcriptoma , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitinación
11.
Plant Cell Rep ; 39(4): 457-472, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31993730

RESUMEN

KEY MESSAGE: Transgenic rice overexpressing PLCP attenuated the virulence of Xanthomonas oryzae pv. oryzae through extensive activation of transduction signal and transcription activities that orchestrate downstream responses including the biosynthesis of secondary metabolites and up-regulation of several pathogenesis-related proteins. High-throughput transcriptome investigations of plant immunity highlight the complexity of gene networks leading to incompatible interaction with the pathogen. Accumulating findings implicate papain-like cysteine proteases (PLCPs) as a central hub in plant defense. While diverse roles of PLCPs in different pathosystems have become more evident, information on gene networks and signaling pathways necessary to orchestrate downstream responses are lacking. To understand the biological significance of cysteine protease against Xanthomonas oryzae pv. oryzae, PLCP overexpression and knockout rice lines were generated. The pathogenicity test revealed the attenuation of Xanthomonas oryzae pv. oryzae race K3a virulence in transgenic lines which is ascribed to high hydrogen peroxide and free salicylic acid accumulation. Next-generation sequencing of RNA from transgenic and wild-type plants identified 1597 combined differentially expressed genes, 1269 of which were exclusively regulated in the transgenic libraries. It was found that PLCP aids rice to circumvent infection through the extensive activation of transduction signal and transcription factors that orchestrate downstream responses, including up-regulation of multiple pathogenesis-related proteins and biosynthesis of secondary metabolites.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Resistencia a la Enfermedad/genética , Oryza/enzimología , Oryza/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Xanthomonas/patogenicidad , Cisteína Endopeptidasas/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/inmunología , Técnicas de Inactivación de Genes , Ontología de Genes , Genoma de Planta , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , Peróxido de Hidrógeno/metabolismo , Oryza/genética , Oryza/inmunología , Enfermedades de las Plantas/inmunología , Plantas Modificadas Genéticamente , Mapeo de Interacción de Proteínas , Interferencia de ARN , RNA-Seq , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología , Transcriptoma , Regulación hacia Arriba , Virulencia
12.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32752068

RESUMEN

The rice SLR1 gene encodes the DELLA protein, and a loss-of-function mutation is dwarfed by inhibiting plant growth. We generate slr1-d mutants with a semi-dominant dwarf phenotype to target mutations of the DELLA/TVHYNP domain using CRISPR/Cas9 genome editing in rice. Sixteen genetic edited lines out of 31 transgenic plants were generated. Deep sequencing results showed that the mutants had six different mutation types at the target site of the TVHYNP domain of the SLR1 gene. The homo-edited plants selected individuals without DNA (T-DNA) transcribed by segregation in the T1 generation. The slr1-d7 and slr1-d8 plants caused a gibberellin (GA)-insensitive dwarf phenotype with shrunken leaves and shortened internodes. A genome-wide gene expression analysis by RNA-seq indicated that the expression levels of two GA-related genes, GA20OX2 (Gibberellin oxidase) and GA3OX2, were increased in the edited mutant plants, suggesting that GA20OX2 acts as a convert of GA12 signaling. These mutant plants are required by altering GA responses, at least partially by a defect in the phytohormone signaling system process and prevented cell elongation. The new mutants, namely, the slr1-d7 and slr1-d8 lines, are valuable semi-dominant dwarf alleles with potential application value for molecule breeding using the CRISPR/Cas9 system in rice.


Asunto(s)
Oryza/genética , Reguladores del Crecimiento de las Plantas/genética , Proteínas de Plantas/genética , Transcriptoma/genética , Alelos , Secuencia de Aminoácidos/genética , Sistemas CRISPR-Cas/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Giberelinas/metabolismo , Mutación/genética , Oryza/crecimiento & desarrollo , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Transducción de Señal/genética
13.
Breed Sci ; 66(2): 226-33, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27162494

RESUMEN

UDP-glucose 4-epimerase (UGE) catalyzes the reversible conversion of UDP-glucose to UDP-galactose. To understand the biological function of UGE from Brassica rapa, the gene BrUGE1 was cloned and introduced into the genome of wild type rice 'Gopum' using the Agrobacterium-mediated transformation method. Four lines which carried a single copy gene were selected and forwarded to T3 generation. Agronomic traits evaluation of the transgenic T3 lines (CB01, CB03, and CB06) under optimal field conditions revealed enriched biomass production particularly in panicle length, number of productive tillers, number of spikelets per panicle, and filled spikelets. These remarkably improved agronomic traits were ascribed to a higher photosynthetic rate complemented with higher CO2 assimilation. Transcripts of BrUGE1 in transgenic lines continuously accumulated at higher levels after the 20% PEG6000 treatment, implying its probable role in drought stress regulation. This was paralleled by rapid accumulation of soluble sugars which act as osmoprotectants, leading to delayed leaf rolling and drying. Our findings suggest the potential of BrUGE1 in improving rice growth performance under optimal and water deficit conditions.

14.
BMB Rep ; 57(2): 79-85, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38303561

RESUMEN

Pre-harvest sprouting is a critical phenomenon involving germination of seeds in the mother plant before harvest under relative humid conditions and reduced dormancy. In this paper, we generated HDR mutant lines with one region SNP (C/T) and an insertion of 6 bp (GGT/GGTGGCGGC) in OsERF1 genes for pre-harvest sprouting (PHS) resistance using CRISPR/Cas9 and a geminiviral replicon system. The incidence of HDR was 2.6% in transformed calli. T1 seeds were harvested from 12 HDR-induced calli and named ERF1-hdr line. Molecular stability, key agronomic properties, physiological properties, and biochemical properties of target genes in the ERF1-hdr line were investigated for three years. The ERF1-hdr line showed significantly enhanced seed dormancy and pre-harvest sprouting resistance. qRT-PCR analysis suggested that enhanced ABA signaling resulted in a stronger phenotype of PHS resistance. These results indicate that efficient HDR can be achieved through SNP/InDel replacement using a single and modular configuration applicable to different rice targets and other crops. This work demonstrates the potential to replace all genes with elite alleles within one generation and greatly expands our ability to improve agriculturally important traits. [BMB Reports 2024; 57(2): 79-85].


Asunto(s)
Oryza , Oryza/genética , Sistemas CRISPR-Cas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/genética , Semillas/metabolismo , Fenotipo
15.
Plant Cell Rep ; 32(10): 1521-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23743654

RESUMEN

KEY MESSAGE: Overexpression of OsGS gene modulates oxidative stress response in rice after exposure to cadmium stress. Our results describe the features of transformants with enhanced tolerance to Cd and abiotic stresses. Glutamine synthetase (GS) (EC 6.3.1.2) is an enzyme that plays an essential role in the metabolism of nitrogen by catalyzing the condensation of glutamate and ammonia to form glutamine. Exposure of plants to cadmium (Cd) has been reported to decrease GS activity in maize, pea, bean, and rice. To better understand the function of the GS gene under Cd stress in rice, we constructed a recombinant pART vector carrying the GS gene under the control of the CaMV 35S promoter and OCS terminator and transformed using Agrobacterium tumefaciens. We then investigated GS overexpressing rice lines at the physiological and molecular levels under Cd toxicity and abiotic stress conditions. We observed a decrease in GS enzyme activity and mRNA expression among transgenic and wild-type plants subjected to Cd stress. The decrease, however, was significantly lower in the wild type than in the transgenic plants. This was further validated by the high GS mRNA expression and enzyme activity in most of the transgenic lines. Moreover, after 10 days of exposure to Cd stress, increase in the glutamine reductase activity and low or no malondialdehyde contents were observed. These results showed that overexpression of the GS gene in rice modulated the expression of enzymes responsible for membrane peroxidation that may result in plant death.


Asunto(s)
Cadmio/farmacología , Glutamato-Amoníaco Ligasa/metabolismo , Oryza/fisiología , Estrés Oxidativo , Secuencia de Aminoácidos , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Glutamato-Amoníaco Ligasa/genética , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido , Malondialdehído/metabolismo , Datos de Secuencia Molecular , Oryza/enzimología , Oryza/genética , Hojas de la Planta/enzimología , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Regiones Promotoras Genéticas
16.
Bioprocess Biosyst Eng ; 36(5): 591-5, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22940807

RESUMEN

Conversion of synthesis gas (CO and H2) to ethanol can be an alternative, promising technology to produce biofuels from renewable biomass. To distinguish microbial utilization of carbon source between fructose and synthesis gas CO and to evaluate biological production of ethanol from CO, we adopted the (13)C-enrichment of the CO substrate and hypothesized that the residual increase in δ(13)C of the cell biomass would reflect the increased contribution of (13)C-enriched CO. Addition of synthesis gas to live culture medium for ethanol fermentation by Clostridum ljungdahlii increased the microbial growth and ethanol production. Despite the high (13)C-enrichment in CO (99 atom % (13)C), however, microbial δ(13)C increased relatively small compared to the microbial growth. The uptake efficiency of CO estimated using the isotope mass balance equation was also very low: 0.0014 % for the low CO and 0.0016 % for the high CO treatment. Furthermore, the fast production of ethanol in the early stage indicated that the presence of sugar in fermentation medium would limit the utilization of CO as a carbon source by C. ljungdahlii.


Asunto(s)
Monóxido de Carbono/metabolismo , Clostridium/metabolismo , Etanol/metabolismo , Isótopos de Carbono/química , Isótopos de Carbono/metabolismo , Clostridium/crecimiento & desarrollo
17.
Indian J Exp Biol ; 51(7): 522-30, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23898551

RESUMEN

Chinese cabbage (Brassica rapa) is widely recognized for its economic importance and contribution to human nutrition but abiotic and biotic stresses are main obstacle for its quality, nutritional status and production. In this study, 3,429 Express Sequence Tag (EST) sequences were generated from B. rapa cv. Osome cDNA library and the unique transcripts were classified functionally using a gene ontology (GO) hierarchy, Kyoto encyclopedia of genes and genomes (KEGG). KEGG orthology and the structural domain data were obtained from the biological database for stress related genes (SRG). EST datasets provided a wide outlook of functional characterization of B. rapa cv. Osome. In silico analysis revealed % 83 of ESTs to be well annotated towards reeds one dimensional concept. Clustering of ESTs returned 333 contigs and 2,446 singlets, giving a total of 3,284 putative unigene sequences. This dataset contained 1,017 EST sequences functionally annotated to stress responses and from which expression of randomly selected SRGs were analyzed against cold, salt, drought, ABA, water and PEG stresses. Most of the SRGs showed differentially expression against these stresses. Thus, the EST dataset is very important for discovering the potential genes related to stress resistance in Chinese cabbage, and can be of useful resources for genetic engineering of Brassica sp.


Asunto(s)
Brassica/genética , Etiquetas de Secuencia Expresada/metabolismo , Perfilación de la Expresión Génica , Genes de Plantas/genética , Genoma de Planta , Anotación de Secuencia Molecular , Estrés Fisiológico/genética , Brassica/efectos de los fármacos , Brassica/crecimiento & desarrollo , Bases de Datos Genéticas , Biblioteca de Genes , Redes Reguladoras de Genes , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Cloruro de Sodio/farmacología
18.
ACS Omega ; 8(45): 42548-42554, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38024697

RESUMEN

Gastric problems are often caused by the well-known Helicobacter pylori (H. pylori) bacterium. One of the biggest obstacles to the treatment of H. pylori infections is increasing the antibiotic resistance. During our search for naturally derived anti-H. pylori compounds, six major compounds were isolated from the methylene chloride (CH2Cl2) and ethyl acetate (EtOAc) fractions of Rumex acetosa that showed anti-H. pylori activity. Three anthraquinones and three anthraquinone glucosides were identified as the major chemical constituents of the CH2Cl2 and EtOAc fractions, respectively. The chemical structures were identified to be emodin (1), chrysophanol (2), physcion (3), emodin-8-O-ß-d-glucoside (4), chrysophanol-8-O-ß-d-glucoside (5), and physcion-8-O-ß-d-glucoside (6) by UV, 1H NMR, 13C NMR, and mass spectrometry. Anti-H. pylori activity, including the minimum inhibitory concentration (MIC) value of each compound, was evaluated against two H. pylori strains. All isolates exhibited anti-H. pylori activity with different potencies, with an MIC value ranging between 3.13 and 25 µM. However, some variations were found between the two strains. While compound 5 displayed the most potent antibacterial activity with an MIC50 value of 8.60 µM and an MIC90 value of 15.7 µM against H. pylori strain 51, compound 1 exhibited the most potent inhibitory activity against H. pylori strain 43504. The two compounds also showed moderate urease inhibitory activity, with compound 1 demonstrating activity higher than that of compound 5. Furthermore, a molecular docking study revealed the high binding ability of compounds 1 and 5 to the active site of H. pylori urease. The present study suggests that the six anthraquinones isolated from R. acetosa with the whole parts of this plant may be natural candidates for the treatment of H. pylori infection. Further studies are required to determine the exact mechanism of action and to evaluate safety issues in the human body.

19.
Genes (Basel) ; 14(1)2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36672792

RESUMEN

In the past 20 years, plant genetics and breeding research using molecular biology has been greatly improved via the functional analysis of genes, species identification and transformation techniques [...].


Asunto(s)
Fitomejoramiento , Plantas , Plantas/genética , Investigación Genética , Biología Molecular
20.
Genes (Basel) ; 13(8)2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-36011379

RESUMEN

Tomato rootstocks are important to increase yield and control soil-borne pathogens, increasing vigor for a longer crop cycle and tolerance to biotic and abiotic stress. This study, conducted in the greenhouse of Sunchon National University during the period from 2019 to 2022, aimed to identify local soil-borne-disease resistant interspecific and intraspecific tomato hybrid rootstocks. The 71 interspecific hybrids (S. lycopersicum × S. habrochaites) showed that the germination vigor (GV) was less than Maxifort, except for several combinations. The germination rate (GP) of cross-species hybrids showed a different pattern according to the hybrid combinations, of which three combinations showed less than 30%. The horticultural traits, such as GV and GP, of the intraspecies hybrid (S. l × S. l) combination were significantly improved compared to that of Maxifort. In 71 combinations (S. l × S. h) and 25 combinations (S. l × S. l), MAS was used to evaluate the resistance of eight genes related to soil-borne pathogens, four genes related to vector-mediated pathogens, and three genes related to air-borne pathogens. The results showed that the new hybrid combination had improved resistance over the commercial-stock Maxifort. Therefore, interspecies and intraspecies hybrid techniques for breeding commercial rootstocks can be utilized as a way to improve horticultural properties and resistance to soil-borne diseases in tomato.


Asunto(s)
Solanum lycopersicum , Resistencia a la Enfermedad/genética , Humanos , Solanum lycopersicum/genética , Fenotipo , Fitomejoramiento , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA