Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 749, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090531

RESUMEN

BACKGROUND: Abscisic acid (ABA) plays a crucial role in seed dormancy, germination, and growth, as well as in regulating plant responses to environmental stresses during plant growth and development. However, detailed information about the PYL-PP2C-SnRK2s family, a central component of the ABA signaling pathway, is not known in pitaya. RESULTS: In this study, we identified 19 pyrabactin resistance-likes (PYLs), 70 type 2 C protein phosphatases (PP2Cs), and 14 SNF1-related protein kinase 2s (SnRK2s) from pitaya. In pitaya, tandem duplication was the primary mechanism for amplifying the PYL-PP2C-SnRK2s family. Co-linearity analysis revealed more homologous PYL-PP2C-SnRK2s gene pairs located in collinear blocks between pitaya and Beta vulgaris L. than that between pitaya and Arabidopsis. Transcriptome analysis showed that the PYL-PP2C-SnRK2s gene family plays a role in pitaya's response to infection by N. dimidiatum. By spraying ABA on pitaya and subsequently inoculating it with N. dimidiatum, we conducted qRT-PCR experiments to observe the response of the PYL-PP2C-SnRK2s gene family and disease resistance-related genes to ABA. These treatments significantly enhanced pitaya's resistance to pitaya canker. Further protein interaction network analysis helped us identify five key PYLs genes that were upregulated during the interaction between pitaya and N. dimidiatum, and their expression patterns were verified by qRT-PCR. Subcellular localization analysis revealed that the PYL (Hp1879) gene is primarily distributed in the nucleus. CONCLUSION: This study enhances our understanding of the response of PYL-PP2C-SnRK2s to ABA and also offers a new perspective on pitaya disease resistance.


Asunto(s)
Ácido Abscísico , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Transducción de Señal , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Perfilación de la Expresión Génica , Filogenia , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Familia de Multigenes , Proteína Fosfatasa 2C/metabolismo , Proteína Fosfatasa 2C/genética
2.
BMC Plant Biol ; 24(1): 4, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38163897

RESUMEN

BACKGROUND: Understanding how plants and pathogens regulate each other's gene expression during their interactions is key to revealing the mechanisms of disease resistance and controlling the development of pathogens. Despite extensive studies on the molecular and genetic basis of plant immunity against pathogens, the influence of pitaya immunity on N. dimidiatum metabolism to restrict pathogen growth is poorly understood, and how N. dimidiatum breaks through pitaya defenses. In this study, we used the RNA-seq method to assess the expression profiles of pitaya and N. dimidiatum at 4 time periods after interactions to capture the early effects of N. dimidiatum on pitaya processes. RESULTS: The study defined the establishment of an effective method for analyzing transcriptome interactions between pitaya and N. dimidiatum and to obtain global expression profiles. We identified gene expression clusters in both the host pitaya and the pathogen N. dimidiatum. The analysis showed that numerous differentially expressed genes (DEGs) involved in the recognition and defense of pitaya against N. dimidiatum, as well as N. dimidiatum's evasion of recognition and inhibition of pitaya. The major functional groups identified by GO and KEGG enrichment were responsible for plant and pathogen recognition, phytohormone signaling (such as salicylic acid, abscisic acid). Furthermore, the gene expression of 13 candidate genes involved in phytopathogen recognition, phytohormone receptors, and the plant resistance gene (PG), as well as 7 effector genes of N. dimidiatum, including glycoside hydrolases, pectinase, and putative genes, were validated by qPCR. By focusing on gene expression changes during interactions between pitaya and N. dimidiatum, we were able to observe the infection of N. dimidiatum and its effects on the expression of various defense components and host immune receptors. CONCLUSION: Our data show that various regulators of the immune response are modified during interactions between pitaya and N. dimidiatum. Furthermore, the activation and repression of these genes are temporally coordinated. These findings provide a framework for better understanding the pathogenicity of N. dimidiatum and its role as an opportunistic pathogen. This offers the potential for a more effective defense against N. dimidiatum.


Asunto(s)
Cactaceae , Reguladores del Crecimiento de las Plantas , Transcriptoma , Cactaceae/genética , Interacciones Huésped-Patógeno/genética , Resistencia a la Enfermedad/genética , Redes y Vías Metabólicas , Perfilación de la Expresión Génica , Enfermedades de las Plantas/genética , Regulación de la Expresión Génica de las Plantas
3.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732009

RESUMEN

The interaction between light and phytohormones is crucial for plant growth and development. The practice of supplementing light at night during winter to promote pitaya flowering and thereby enhance yield has been shown to be crucial and widely used. However, it remains unclear how supplemental winter light regulates phytohormone levels to promote flowering in pitaya. In this study, through analyzing the transcriptome data of pitaya at four different stages (NL, L0, L1, L2), we observed that differentially expressed genes (DEGs) were mainly enriched in the phytohormone biosynthesis pathway. We further analyzed the data and found that cytokinin (CK) content first increased at the L0 stage and then decreased at the L1 and L2 stages after supplemental light treatment compared to the control (NL). Gibberellin (GA), auxin (IAA), salicylic acid (SA), and jasmonic acid (JA) content increased during the formation of flower buds (L1, L2 stages). In addition, the levels of GA, ethylene (ETH), IAA, and abscisic acid (ABA) increased in flower buds after one week of development (L2f). Our results suggest that winter nighttime supplemental light can interact with endogenous hormone signaling in pitaya, particularly CK, to regulate flower bud formation. These results contribute to a better understanding of the mechanism of phytohormone interactions during the induction of flowering in pitaya under supplemental light in winter.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Luz , Reguladores del Crecimiento de las Plantas , Estaciones del Año , Reguladores del Crecimiento de las Plantas/metabolismo , Flores/metabolismo , Flores/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Citocininas/metabolismo , Giberelinas/metabolismo , Ipomoea nil/metabolismo , Ipomoea nil/genética , Transcriptoma , Perfilación de la Expresión Génica , Ciclopentanos , Oxilipinas
4.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37511162

RESUMEN

Self-incompatible pitaya varieties have low fruit-setting rates under natural conditions, leading to higher production costs and hindering industrial prosperity. Through transcriptome sequencing, we obtained the 36,900 longest transcripts (including 9167 new transcripts) from 60 samples of flowers. Samples were collected pre- and post-pollination (at 0 h, 0.5 h, 2 h, 4 h, and 12 h) from two varieties of pitaya (self-compatible Jindu No. 1 and self-incompatible Cu Sha). Using the RNA-Seq data and comparison of reference genomes, we annotated 28,817 genes in various databases, and 1740 genes were optimized in their structure for annotation. There were significant differences in the expression of differentially expressed genes (DEGs) in the pitaya stigmas under different pollination types, especially at the late post-pollination stage, where the expression of protease genes increasedal significantly under cross-pollination. We identified DEGs involved in the ribosomal, ubiquitination-mediated, and phyto-signaling pathways that may be involved in pitaya SI regulation. Based on the available transcriptome data and bioinformatics analysis, we tentatively identified HuS-RNase2 as a candidate gynogenetic S gene in the pitaya GSI system.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Flores/genética , Flores/metabolismo , RNA-Seq , Transducción de Señal/genética , Polinización/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA