Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(46): e2214164119, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36343234

RESUMEN

A quantitative understanding of the coupled dynamics of flow and particles in aerosol and droplet transmission associated with speech remains elusive. Here, we summarize an effort that integrates insights into flow-particle dynamics induced by the production plosive sounds during speech with skin-integrated electronic systems for monitoring the production of these sounds. In particular, we uncover diffusive and ballistic regimes separated by a threshold particle size and characterize the Lagrangian acceleration and pair dispersion. Lagrangian dynamics of the particles in the diffusive regime exhibit features of isotropic turbulence. These fundamental findings highlight the value in skin-interfaced wireless sensors for continuously measuring critical speech patterns in clinical settings, work environments, and the home, based on unique neck biomechanics associated with the generation of plosive sounds. We introduce a wireless, soft device that captures these motions to enable detection of plosive sounds in multiple languages through a convolutional neural network approach. This work spans fundamental flow-particle physics to soft electronic technology, with implications in monitoring and studying critical speech patterns associated with aerosol and droplet transmissions relevant to the spread of infectious diseases.


Asunto(s)
Electrónica , Habla , Aerosoles , Tamaño de la Partícula , Movimiento (Física)
2.
Phys Rev Lett ; 124(15): 154502, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32357025

RESUMEN

When a charge selective surface consumes or transports only cations or anions in the electrolyte, biased ion rejection initiates hydrodynamic instability, resulting in vortical fluid motions called electroconvection. In this Letter, we describe the first laboratory observation of three-dimensional electroconvection on a charge selective surface. Combining experiment and scaling analysis, we successfully categorized three distinct patterns of 3D electroconvection according to [(Ra_{E})/(Re^{2}Sc)] [electric Rayleigh number (Ra_{E}), Reynolds number (Re), Schmidt number (Sc)] as (i) polygonal, (ii) transverse, or (iii) longitudinal rolls. If Re increases or Ra_{E} decreases, pure longitudinal rolls are presented. On the other hand, transverse rolls are formed between longitudinal rolls, and two rolls are transformed as polygonal one at higher Ra_{E} or lower Re. In this pattern selection scenario, Sc determines the critical electric Rayleigh number (Ra_{E}^{*}) for the onset of each roll, resulting in Ra_{E}^{*}∼Re^{2}Sc. We also verify that convective ion flux by electroconvection (represented by an electric Nusselt number Nu_{E}) is fitted to a power law, Nu_{E}∼[(Ra_{E}-Ra_{E}^{*})/(Re^{2}Sc)]^{α_{1}}Re^{α_{2}}Pe^{α_{3}} [Péclet number (Pe)], where each term represents the characteristics of electroconvection, shear flow, and ion transport.

3.
PNAS Nexus ; 3(3): pgae110, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38516273

RESUMEN

Recent advances in passive flying systems inspired by wind-dispersed seeds contribute to increasing interest in their use for remote sensing applications across large spatial domains in the Lagrangian frame of reference. These concepts create possibilities for developing and studying structures with performance characteristics and operating mechanisms that lie beyond those found in nature. Here, we demonstrate a hybrid flier system, fabricated through a process of controlled buckling, to yield unusual geometries optimized for flight. Specifically, these constructs simultaneously exploit distinct fluid phenomena, including separated vortex rings from features that resemble those of dandelion seeds and the leading-edge vortices derived from behaviors of maple seeds. Advanced experimental measurements and computational simulations of the aerodynamics and induced flow physics of these hybrid fliers establish a concise, scalable analytical framework for understanding their flight mechanisms. Demonstrations with functional payloads in various forms, including bioresorbable, colorimetric, gas-sensing, and light-emitting platforms, illustrate examples with diverse capabilities in sensing and tracking.

4.
Sci Adv ; 8(51): eade3201, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36563148

RESUMEN

Recently reported winged microelectronic systems offer passive flight mechanisms as a dispersal strategy for purposes in environmental monitoring, population surveillance, pathogen tracking, and other applications. Initial studies indicate potential for technologies of this type, but advances in structural and responsive materials and in aerodynamically optimized geometries are necessary to improve the functionality and expand the modes of operation. Here, we introduce environmentally degradable materials as the basis of 3D fliers that allow remote, colorimetric assessments of multiple environmental parameters-pH, heavy metal concentrations, and ultraviolet exposure, along with humidity levels and temperature. Experimental and theoretical investigations of the aerodynamics of these systems reveal design considerations that include not only the geometries of the structures but also their mass distributions across a range of bioinspired designs. Preliminary field studies that rely on drones for deployment and for remote colorimetric analysis by machine learning interpretation of digital images illustrate scenarios for practical use.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA