Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(26): e2405889121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38889149

RESUMEN

Neandertals and Denisovans, having inhabited distinct regions in Eurasia and possibly Oceania for over 200,000 y, experienced ample time to adapt to diverse environmental challenges these regions presented. Among present-day human populations, Papua New Guineans (PNG) stand out as one of the few carrying substantial amounts of both Neandertal and Denisovan DNA, a result of past admixture events with these archaic human groups. This study investigates the distribution of introgressed Denisovan and Neandertal DNA within two distinct PNG populations, residing in the highlands of Mt Wilhelm and the lowlands of Daru Island. These locations exhibit unique environmental features, some of which may parallel the challenges that archaic humans once confronted and adapted to. Our results show that PNG highlanders carry higher levels of Denisovan DNA compared to PNG lowlanders. Among the Denisovan-like haplotypes with higher frequencies in highlander populations, those exhibiting the greatest frequency difference compared to lowlander populations also demonstrate more pronounced differences in population frequencies than frequency-matched nonarchaic variants. Two of the five most highly differentiated of those haplotypes reside in genomic areas linked to brain development genes. Conversely, Denisovan-like haplotypes more frequent in lowlanders overlap with genes associated with immune response processes. Our findings suggest that Denisovan DNA has provided genetic variation associated with brain biology and immune response to PNG genomes, some of which might have facilitated adaptive processes to environmental challenges.


Asunto(s)
Haplotipos , Hombre de Neandertal , Papúa Nueva Guinea , Humanos , Animales , Hombre de Neandertal/genética , Adaptación Fisiológica/genética , Genética de Población
2.
Mol Biol Evol ; 38(11): 5107-5121, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34383935

RESUMEN

The settlement of Sahul, the lost continent of Oceania, remains one of the most ancient and debated human migrations. Modern New Guineans inherited a unique genetic diversity tracing back 50,000 years, and yet there is currently no model reconstructing their past population dynamics. We generated 58 new whole-genome sequences from Papua New Guinea, filling geographical gaps in previous sampling, specifically to address alternative scenarios of the initial migration to Sahul and the settlement of New Guinea. Here, we present the first genomic models for the settlement of northeast Sahul considering one or two migrations from Wallacea. Both models fit our data set, reinforcing the idea that ancestral groups to New Guinean and Indigenous Australians split early, potentially during their migration in Wallacea where the northern route could have been favored. The earliest period of human presence in Sahul was an era of interactions and gene flow between related but already differentiated groups, from whom all modern New Guineans, Bismarck islanders, and Indigenous Australians descend. The settlement of New Guinea was probably initiated from its southeast region, where the oldest archaeological sites have been found. This was followed by two migrations into the south and north lowlands that ultimately reached the west and east highlands. We also identify ancient gene flows between populations in New Guinea, Australia, East Indonesia, and the Bismarck Archipelago, emphasizing the fact that the anthropological landscape during the early period of Sahul settlement was highly dynamic rather than the traditional view of extensive isolation.


Asunto(s)
Etnicidad , Migración Humana , Australia , Humanos , Papúa Nueva Guinea , Filogenia
3.
Nat Commun ; 15(1): 3352, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688933

RESUMEN

Highlanders and lowlanders of Papua New Guinea have faced distinct environmental stress, such as hypoxia and environment-specific pathogen exposure, respectively. In this study, we explored the top genomics regions and the candidate driver SNPs for selection in these two populations using newly sequenced whole-genomes of 54 highlanders and 74 lowlanders. We identified two candidate SNPs under selection - one in highlanders, associated with red blood cell traits and another in lowlanders, which is associated with white blood cell count - both potentially influencing the heart rate of Papua New Guineans in opposite directions. We also observed four candidate driver SNPs that exhibit linkage disequilibrium with an introgressed haplotype, highlighting the need to explore the possibility of adaptive introgression within these populations. This study reveals that the signatures of positive selection in highlanders and lowlanders of Papua New Guinea align closely with the challenges they face, which are specific to their environments.


Asunto(s)
Altitud , Haplotipos , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Selección Genética , Papúa Nueva Guinea , Humanos , Genoma Humano , Genética de Población
4.
PLoS One ; 16(7): e0253921, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34288918

RESUMEN

OBJECTIVES: Altitude is one of the most demanding environmental pressures for human populations. Highlanders from Asia, America and Africa have been shown to exhibit different biological adaptations, but Oceanian populations remain understudied [Woolcock et al., 1972; Cotes et al., 1974; Senn et al., 2010]. We tested the hypothesis that highlanders phenotypically differ from lowlanders in Papua New Guinea, as a result of inhabiting the highest mountains in Oceania for at least 20,000 years. MATERIALS AND METHODS: We collected data for 13 different phenotypes related to altitude for 162 Papua New Guineans living at high altitude (Mont Wilhelm, 2,300-2,700 m above sea level (a.s.l.) and low altitude (Daru, <100m a.s.l.). Multilinear regressions were performed to detect differences between highlanders and lowlanders for phenotypic measurements related to body proportions, pulmonary function, and the circulatory system. RESULTS: Six phenotypes were significantly different between Papua New Guinean highlanders and lowlanders. Highlanders show shorter height (p-value = 0.001), smaller waist circumference (p-value = 0.002), larger Forced Vital Capacity (FVC) (p-value = 0.008), larger maximal (p-value = 3.20e -4) and minimal chest depth (p-value = 2.37e -5) and higher haemoglobin concentration (p-value = 3.36e -4). DISCUSSION: Our study reports specific phenotypes in Papua New Guinean highlanders potentially related to altitude adaptation. Similar to other human groups adapted to high altitude, the evolutionary history of Papua New Guineans appears to have also followed an adaptive biological strategy for altitude.


Asunto(s)
Aclimatación/fisiología , Altitud , Población Negra/estadística & datos numéricos , Pueblos Indígenas/estadística & datos numéricos , Somatotipos/fisiología , Adulto , Antropometría , Estatura , Femenino , Volumen Espiratorio Forzado , Hemodinámica , Hemoglobinas/análisis , Humanos , Masculino , Persona de Mediana Edad , Papúa Nueva Guinea , Fenotipo , Tórax/anatomía & histología , Capacidad Vital , Circunferencia de la Cintura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA