Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hepatology ; 80(1): 152-162, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38446707

RESUMEN

BACKGROUND AND AIMS: High levels of serum matrix metalloproteinase-7 (MMP-7) have been linked to biliary atresia (BA), with wide variation in concentration cutoffs. We investigated the accuracy of serum MMP-7 as a diagnostic biomarker in a large North American cohort. APPROACH AND RESULTS: MMP-7 was measured in serum samples of 399 infants with cholestasis in the Prospective Database of Infants with Cholestasis study of the Childhood Liver Disease Research Network, 201 infants with BA and 198 with non-BA cholestasis (age median: 64 and 59 days, p = 0.94). MMP-7 was assayed on antibody-bead fluorescence (single-plex) and time resolved fluorescence energy transfer assays. The discriminative performance of MMP-7 was compared with other clinical markers. On the single-plex assay, MMP-7 generated an AUROC of 0.90 (CI: 0.87-0.94). At cutoff 52.8 ng/mL, it produced sensitivity = 94.03%, specificity = 77.78%, positive predictive value = 64.46%, and negative predictive value = 96.82% for BA. AUROC for gamma-glutamyl transferase = 0.81 (CI: 0.77-0.86), stool color = 0.68 (CI: 0.63-0.73), and pathology = 0.84 (CI: 0.76-0.91). Logistic regression models of MMP-7 with other clinical variables individually or combined showed an increase for MMP-7+gamma-glutamyl transferase AUROC to 0.91 (CI: 0.88-0.95). Serum concentrations produced by time resolved fluorescence energy transfer differed from single-plex, with an optimal cutoff of 18.2 ng/mL. Results were consistent within each assay technology and generated similar AUROCs. CONCLUSIONS: Serum MMP-7 has high discriminative properties to differentiate BA from other forms of neonatal cholestasis. MMP-7 cutoff values vary according to assay technology. Using MMP-7 in the evaluation of infants with cholestasis may simplify diagnostic algorithms and shorten the time to hepatoportoenterostomy.


Asunto(s)
Atresia Biliar , Biomarcadores , Metaloproteinasa 7 de la Matriz , Humanos , Metaloproteinasa 7 de la Matriz/sangre , Atresia Biliar/diagnóstico , Atresia Biliar/sangre , Biomarcadores/sangre , Lactante , Femenino , Masculino , Recién Nacido , Estudios de Cohortes , Colestasis/diagnóstico , Colestasis/sangre , Estudios Prospectivos
2.
Hepatology ; 79(6): 1279-1292, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38146932

RESUMEN

BACKGROUND AND AIMS: Alagille syndrome (ALGS) is characterized by chronic cholestasis with associated pruritus and extrahepatic anomalies. Maralixibat, an ileal bile acid transporter inhibitor, is an approved pharmacologic therapy for cholestatic pruritus in ALGS. Since long-term placebo-controlled studies are not feasible or ethical in children with rare diseases, a novel approach was taken comparing 6-year outcomes from maralixibat trials with an aligned and harmonized natural history cohort from the G lobal AL agille A lliance (GALA) study. APPROACH AND RESULTS: Maralixibat trials comprise 84 patients with ALGS with up to 6 years of treatment. GALA contains retrospective data from 1438 participants. GALA was filtered to align with key maralixibat eligibility criteria, yielding 469 participants. Serum bile acids could not be included in the GALA filtering criteria as these are not routinely performed in clinical practice. Index time was determined through maximum likelihood estimation in an effort to align the disease severity between the two cohorts with the initiation of maralixibat. Event-free survival, defined as the time to first event of manifestations of portal hypertension (variceal bleeding, ascites requiring therapy), surgical biliary diversion, liver transplant, or death, was analyzed by Cox proportional hazards methods. Sensitivity analyses and adjustments for covariates were applied. Age, total bilirubin, gamma-glutamyl transferase, and alanine aminotransferase were balanced between groups with no statistical differences. Event-free survival in the maralixibat cohort was significantly better than the GALA cohort (HR, 0.305; 95% CI, 0.189-0.491; p <0.0001). Multiple sensitivity and subgroup analyses (including serum bile acid availability) showed similar findings. CONCLUSIONS: This study demonstrates a novel application of a robust statistical method to evaluate outcomes in long-term intervention studies where placebo comparisons are not feasible, providing wide application for rare diseases. This comparison with real-world natural history data suggests that maralixibat improves event-free survival in patients with ALGS.


Asunto(s)
Síndrome de Alagille , Humanos , Síndrome de Alagille/complicaciones , Síndrome de Alagille/tratamiento farmacológico , Femenino , Masculino , Estudios Retrospectivos , Niño , Lactante , Preescolar , Supervivencia sin Progresión , Adolescente , Proteínas Portadoras , Glicoproteínas de Membrana
3.
J Hepatol ; 80(2): 268-281, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37939855

RESUMEN

BACKGROUND & AIMS: Cholemic nephropathy (CN) is a severe complication of cholestatic liver diseases for which there is no specific treatment. We revisited its pathophysiology with the aim of identifying novel therapeutic strategies. METHODS: Cholestasis was induced by bile duct ligation (BDL) in mice. Bile flux in kidneys and livers was visualized by intravital imaging, supported by MALDI mass spectrometry imaging and liquid chromatography-tandem mass spectrometry. The effect of AS0369, a systemically bioavailable apical sodium-dependent bile acid transporter (ASBT) inhibitor, was evaluated by intravital imaging, RNA-sequencing, histological, blood, and urine analyses. Translational relevance was assessed in kidney biopsies from patients with CN, mice with a humanized bile acid (BA) spectrum, and via analysis of serum BAs and KIM-1 (kidney injury molecule 1) in patients with liver disease and hyperbilirubinemia. RESULTS: Proximal tubular epithelial cells (TECs) reabsorbed and enriched BAs, leading to oxidative stress and death of proximal TECs, casts in distal tubules and collecting ducts, peritubular capillary leakiness, and glomerular cysts. Renal ASBT inhibition by AS0369 blocked BA uptake into TECs and prevented kidney injury up to 6 weeks after BDL. Similar results were obtained in mice with humanized BA composition. In patients with advanced liver disease, serum BAs were the main determinant of KIM-1 levels. ASBT expression in TECs was preserved in biopsies from patients with CN, further highlighting the translational potential of targeting ASBT to treat CN. CONCLUSIONS: BA enrichment in proximal TECs followed by oxidative stress and cell death is a key early event in CN. Inhibiting renal ASBT and consequently BA enrichment in TECs prevents CN and systemically decreases BA concentrations. IMPACT AND IMPLICATIONS: Cholemic nephropathy (CN) is a severe complication of cholestasis and an unmet clinical need. We demonstrate that CN is triggered by the renal accumulation of bile acids (BAs) that are considerably increased in the systemic blood. Specifically, the proximal tubular epithelial cells of the kidney take up BAs via the apical sodium-dependent bile acid transporter (ASBT). We developed a therapeutic compound that blocks ASBT in the kidneys, prevents BA overload in tubular epithelial cells, and almost completely abolished all disease hallmarks in a CN mouse model. Renal ASBT inhibition represents a potential therapeutic strategy for patients with CN.


Asunto(s)
Proteínas Portadoras , Colestasis , Enfermedades Renales , Hepatopatías , Glicoproteínas de Membrana , Transportadores de Anión Orgánico Sodio-Dependiente , Simportadores , Humanos , Ratones , Animales , Colestasis/complicaciones , Colestasis/metabolismo , Riñón/metabolismo , Simportadores/metabolismo , Ácidos y Sales Biliares/metabolismo , Hígado/metabolismo , Conductos Biliares/metabolismo , Hepatopatías/metabolismo , Sodio
4.
Am J Physiol Gastrointest Liver Physiol ; 327(1): G1-G15, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38651949

RESUMEN

The progress of research focused on cholangiocytes and the biliary tree during development and following injury is hindered by limited available quantitative methodologies. Current techniques include two-dimensional standard histological cell-counting approaches, which are rapidly performed, error prone, and lack architectural context or three-dimensional analysis of the biliary tree in opacified livers, which introduce technical issues along with minimal quantitation. The present study aims to fill these quantitative gaps with a supervised machine-learning model (BiliQML) able to quantify biliary forms in the liver of anti-keratin 19 antibody-stained whole slide images. Training utilized 5,019 researcher-labeled biliary forms, which following feature selection, and algorithm optimization, generated an F score of 0.87. Application of BiliQML on seven separate cholangiopathy models [genetic (Afp-CRE;Pkd1l1null/Fl, Alb-CRE;Rbp-jkfl/fl, and Albumin-CRE;ROSANICD), surgical (bile duct ligation), toxicological (3,5-diethoxycarbonyl-1,4-dihydrocollidine), and therapeutic (Cyp2c70-/- with ileal bile acid transporter inhibition)] allowed for a means to validate the capabilities and utility of this platform. The results from BiliQML quantification revealed biological and pathological differences across these seven diverse models, indicating a highly sensitive, robust, and scalable methodology for the quantification of distinct biliary forms. BiliQML is the first comprehensive machine-learning platform for biliary form analysis, adding much-needed morphologic context to standard immunofluorescence-based histology, and provides clinical and basic science researchers with a novel tool for the characterization of cholangiopathies.NEW & NOTEWORTHY BiliQML is the first comprehensive machine-learning platform for biliary form analysis in whole slide histopathological images. This platform provides clinical and basic science researchers with a novel tool for the improved quantification and characterization of biliary tract disorders.


Asunto(s)
Hígado , Aprendizaje Automático Supervisado , Hígado/patología , Hígado/metabolismo , Animales , Ratones , Sistema Biliar/patología , Sistema Biliar/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Conductos Biliares/patología , Conductos Biliares/metabolismo , Enfermedades de los Conductos Biliares/patología , Enfermedades de los Conductos Biliares/metabolismo , Modelos Animales de Enfermedad
5.
Hepatology ; 77(4): 1274-1286, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36645229

RESUMEN

BACKGROUND AND AIMS: A recent multicenter genetic exploration of the biliary atresia splenic malformation syndrome identified mutations in the ciliary gene PKD1L1 as candidate etiologic contributors. We hypothesized that deletion of Pkd1l1 in developing hepatoblasts would lead to cholangiopathy in mice. APPROACH AND RESULTS: CRISPR-based genome editing inserted loxP sites flanking exon 8 of the murine Pkd1l1 gene. Pkd1l1Fl/Fl cross-bred with alpha-fetoprotein-Cre expressing mice to generate a liver-specific intrahepatic Pkd1l1 -deficient model (LKO). From embryonic day 18 through week 30, control ( Fl/Fl ) and LKO mice were evaluated with standard serum chemistries and liver histology. At select ages, tissues were analyzed using RNA sequencing, immunofluorescence, and electron microscopy with a focus on biliary structures, peribiliary inflammation, and fibrosis. Bile duct ligation for 5 days of Fl/Fl and LKO mice was followed by standard serum and liver analytics. Histological analyses from perinatal ages revealed delayed biliary maturation and reduced primary cilia, with progressive cholangiocyte proliferation, peribiliary fibroinflammation, and arterial hypertrophy evident in 7- to 16-week-old LKO versus Fl/Fl livers. Following bile duct ligation, cholangiocyte proliferation, peribiliary fibroinflammation, and necrosis were increased in LKO compared with Fl/Fl livers. CONCLUSIONS: Bile duct ligation of the Pkd1l1 -deficient mouse model mirrors several aspects of the intrahepatic pathophysiology of biliary atresia in humans including bile duct dysmorphogenesis, peribiliary fibroinflammation, hepatic arteriopathy, and ciliopathy. This first genetically linked model of biliary atresia, the Pkd1l1 LKO mouse, may allow researchers a means to develop a deeper understanding of the pathophysiology of this serious and perplexing disorder, including the opportunity to identify rational therapeutic targets.


Asunto(s)
Atresia Biliar , Ciliopatías , Humanos , Animales , Ratones , Lactante , Atresia Biliar/patología , Hígado/patología , Conductos Biliares/patología , Fibrosis , Ciliopatías/complicaciones , Ciliopatías/patología , Proteínas de la Membrana
6.
Hepatology ; 77(3): 862-873, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36131538

RESUMEN

BACKGROUND AND AIMS: In biliary atresia, serum bilirubin is commonly used to predict outcomes after Kasai portoenterostomy (KP). Infants with persistently high levels invariably need liver transplant, but those achieving normalized levels have a less certain disease course. We hypothesized that serum bile acid levels could help predict outcomes in the latter group. APPROACH AND RESULTS: Participants with biliary atresia from the Childhood Liver Disease Research Network were included if they had normalized bilirubin levels 6 months after KP and stored serum samples from the 6-month post-KP clinic visit ( n  = 137). Bile acids were measured from the stored serum samples and used to divide participants into ≤40 µmol/L ( n  = 43) or >40 µmol/L ( n  = 94) groups. At 2 years of age, the ≤40 µmol/L compared with >40 µmol/L group had significantly lower total bilirubin, aspartate aminotransferase, alanine aminotransferase, gamma-glutamyltransferase, bile acids, and spleen size, as well as significantly higher albumin and platelet counts. Furthermore, during 734 person-years of follow-up, those in the ≤40 µmol/L group were significantly less likely to develop splenomegaly, ascites, gastrointestinal bleeding, or clinically evident portal hypertension. The ≤40 µmol/L group had a 10-year cumulative incidence of liver transplant/death of 8.5% (95% CI: 1.1%-26.1%), compared with 42.9% (95% CI: 28.6%-56.4%) for the >40 µmol/L group ( p  = 0.001). CONCLUSIONS: Serum bile acid levels may be a useful prognostic biomarker for infants achieving normalized bilirubin levels after KP.


Asunto(s)
Atresia Biliar , Lactante , Humanos , Niño , Atresia Biliar/cirugía , Portoenterostomía Hepática , Pronóstico , Bilirrubina , Ácidos y Sales Biliares , Biomarcadores , Resultado del Tratamiento , Estudios Retrospectivos
7.
Hepatology ; 77(2): 512-529, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36036223

RESUMEN

BACKGROUND AND AIMS: Alagille syndrome (ALGS) is a multisystem disorder, characterized by cholestasis. Existing outcome data are largely derived from tertiary centers, and real-world data are lacking. This study aimed to elucidate the natural history of liver disease in a contemporary, international cohort of children with ALGS. APPROACH AND RESULTS: This was a multicenter retrospective study of children with a clinically and/or genetically confirmed ALGS diagnosis, born between January 1997 and August 2019. Native liver survival (NLS) and event-free survival rates were assessed. Cox models were constructed to identify early biochemical predictors of clinically evident portal hypertension (CEPH) and NLS. In total, 1433 children (57% male) from 67 centers in 29 countries were included. The 10 and 18-year NLS rates were 54.4% and 40.3%. By 10 and 18 years, 51.5% and 66.0% of children with ALGS experienced ≥1 adverse liver-related event (CEPH, transplant, or death). Children (>6 and ≤12 months) with median total bilirubin (TB) levels between ≥5.0 and <10.0 mg/dl had a 4.1-fold (95% confidence interval [CI], 1.6-10.8), and those ≥10.0 mg/dl had an 8.0-fold (95% CI, 3.4-18.4) increased risk of developing CEPH compared with those <5.0 mg/dl. Median TB levels between ≥5.0 and <10.0 mg/dl and >10.0 mg/dl were associated with a 4.8 (95% CI, 2.4-9.7) and 15.6 (95% CI, 8.7-28.2) increased risk of transplantation relative to <5.0 mg/dl. Median TB <5.0 mg/dl were associated with higher NLS rates relative to ≥5.0 mg/dl, with 79% reaching adulthood with native liver ( p < 0.001). CONCLUSIONS: In this large international cohort of ALGS, only 40.3% of children reach adulthood with their native liver. A TB <5.0 mg/dl between 6 and 12 months of age is associated with better hepatic outcomes. These thresholds provide clinicians with an objective tool to assist with clinical decision-making and in the evaluation of therapies.


Asunto(s)
Síndrome de Alagille , Colestasis , Hipertensión Portal , Humanos , Niño , Masculino , Femenino , Síndrome de Alagille/epidemiología , Estudios Retrospectivos , Hipertensión Portal/etiología
8.
Hepatology ; 77(2): 530-545, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36069569

RESUMEN

BACKGROUND AND AIMS: Detailed investigation of the biological pathways leading to hepatic fibrosis and identification of liver fibrosis biomarkers may facilitate early interventions for pediatric cholestasis. APPROACH AND RESULTS: A targeted enzyme-linked immunosorbent assay-based panel of nine biomarkers (lysyl oxidase, tissue inhibitor matrix metalloproteinase (MMP) 1, connective tissue growth factor [CTGF], IL-8, endoglin, periostin, Mac-2-binding protein, MMP-3, and MMP-7) was examined in children with biliary atresia (BA; n = 187), alpha-1 antitrypsin deficiency (A1AT; n = 78), and Alagille syndrome (ALGS; n = 65) and correlated with liver stiffness (LSM) and biochemical measures of liver disease. Median age and LSM were 9 years and 9.5 kPa. After adjusting for covariates, there were positive correlations among LSM and endoglin ( p = 0.04) and IL-8 ( p < 0.001) and MMP-7 ( p < 0.001) in participants with BA. The best prediction model for LSM in BA using clinical and lab measurements had an R2 = 0.437; adding IL-8 and MMP-7 improved R2 to 0.523 and 0.526 (both p < 0.0001). In participants with A1AT, CTGF and LSM were negatively correlated ( p = 0.004); adding CTGF to an LSM prediction model improved R2 from 0.524 to 0.577 ( p = 0.0033). Biomarkers did not correlate with LSM in ALGS. A significant number of biomarker/lab correlations were found in participants with BA but not those with A1AT or ALGS. CONCLUSIONS: Endoglin, IL-8, and MMP-7 significantly correlate with increased LSM in children with BA, whereas CTGF inversely correlates with LSM in participants with A1AT; these biomarkers appear to enhance prediction of LSM beyond clinical tests. Future disease-specific investigations of change in these biomarkers over time and as predictors of clinical outcomes will be important.


Asunto(s)
Síndrome de Alagille , Colestasis , Diagnóstico por Imagen de Elasticidad , Hepatopatías , Humanos , Niño , Hígado/patología , Metaloproteinasa 7 de la Matriz , Endoglina , Interleucina-8 , Colestasis/patología , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/patología , Hepatopatías/patología , Biomarcadores , Síndrome de Alagille/patología
9.
Semin Liver Dis ; 43(3): 323-335, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37582400

RESUMEN

Biliary atresia (BA) is the most prevalent serious liver disease of infancy and childhood, and the principal indication for liver transplantation in pediatrics. BA is best considered as an idiopathic panbiliary cholangiopathy characterized by obstruction of bile flow and consequent cholestasis presenting during fetal and perinatal periods. While several etiologies have been proposed, each has significant drawbacks that have limited understanding of disease progression and the development of effective treatments. Recently, modern genetic analyses have uncovered gene variants contributing to BA, thereby shifting the paradigm for explaining the BA phenotype from an acquired etiology (e.g., virus, toxin) to one that results from genetically altered cholangiocyte development and function. Herein we review recently reported genetic contributions to BA, highlighting the enhanced representation of variants in biological pathways involving ciliary function, cytoskeletal structure, and inflammation. Finally, we blend these findings as a new framework for understanding the resultant BA phenotype as a developmental cholangiopathy.


Asunto(s)
Atresia Biliar , Colestasis , Trasplante de Hígado , Animales , Embarazo , Femenino , Humanos , Niño , Atresia Biliar/genética , Colestasis/complicaciones , Trasplante de Hígado/efectos adversos , Inflamación/complicaciones , Modelos Animales de Enfermedad
10.
J Hepatol ; 78(4): 693-703, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36528237

RESUMEN

BACKGROUND & AIMS: Despite recent progress, non-invasive tests for the diagnostic assessment and monitoring of non-alcoholic fatty liver disease (NAFLD) remain an unmet need. Herein, we aimed to identify diagnostic signatures of the key histological features of NAFLD. METHODS: Using modified-aptamer proteomics, we assayed 5,220 proteins in each of 2,852 single serum samples from 636 individuals with histologically confirmed NAFLD. We developed and validated dichotomized protein-phenotype models to identify clinically relevant severities of steatosis (grade 0 vs. 1-3), hepatocellular ballooning (0 vs. 1 or 2), lobular inflammation (0-1 vs. 2-3) and fibrosis (stages 0-1 vs. 2-4). RESULTS: The AUCs of the four protein models, based on 37 analytes (18 not previously linked to NAFLD), for the diagnosis of their respective components (at a clinically relevant severity) in training/paired validation sets were: fibrosis (AUC 0.92/0.85); steatosis (AUC 0.95/0.79), inflammation (AUC 0.83/0.72), and ballooning (AUC 0.87/0.83). An additional outcome, at-risk NASH, defined as steatohepatitis with NAFLD activity score ≥4 (with a score of at least 1 for each of its components) and fibrosis stage ≥2, was predicted by multiplying the outputs of each individual component model (AUC 0.93/0.85). We further evaluated their ability to detect change in histology following treatment with placebo, pioglitazone, vitamin E or obeticholic acid. Component model scores significantly improved in the active therapies vs. placebo, and differential effects of vitamin E, pioglitazone, and obeticholic acid were identified. CONCLUSIONS: Serum protein scanning identified signatures corresponding to the key components of liver biopsy in NAFLD. The models developed were sufficiently sensitive to characterize the longitudinal change for three different drug interventions. These data support continued validation of these proteomic models to enable a "liquid biopsy"-based assessment of NAFLD. CLINICAL TRIAL NUMBER: Not applicable. IMPACT AND IMPLICATIONS: An aptamer-based protein scan of serum proteins was performed to identify diagnostic signatures of the key histological features of non-alcoholic fatty liver disease (NAFLD), for which no approved non-invasive diagnostic tools are currently available. We also identified specific protein signatures related to the presence and severity of NAFLD and its histological components that were also sensitive to change over time. These are fundamental initial steps in establishing a serum proteome-based diagnostic signature of NASH and provide the rationale for using these signatures to test treatment response and to identify several novel targets for evaluation in the pathogenesis of NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Biopsia , Fibrosis , Inflamación/patología , Hígado/patología , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/etiología , Cirrosis Hepática/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Pioglitazona , Proteómica , Vitamina E
11.
Hepatology ; 75(6): 1627-1646, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35229330

RESUMEN

With the application of modern investigative technologies, cholestatic liver diseases of genetic etiology are increasingly identified as the root cause of previously designated "idiopathic" adult and pediatric liver diseases. Here, we review advances in the field enhanced by a deeper understanding of the phenotypes associated with specific gene defects that lead to cholestatic liver diseases. There are evolving areas for clinicians in the current era specifically regarding the role for biopsy and opportunities for a "sequencing first" approach. Risk stratification based on the severity of the genetic defect holds promise to guide the decision to pursue primary liver transplantation versus medical therapy or nontransplant surgery, as well as early screening for HCC. In the present era, the expanding toolbox of recently approved therapies for hepatologists has real potential to help many of our patients with genetic causes of cholestasis. In addition, there are promising agents under study in the pipeline. Relevant to the current era, there are still gaps in knowledge of causation and pathogenesis and lack of fully accepted biomarkers of disease progression and pruritus. We discuss strategies to overcome the challenges of genotype-phenotype correlation and draw attention to the extrahepatic manifestations of these diseases. Finally, with attention to identifying causes and treatments of genetic cholestatic disorders, we anticipate a vibrant future of this dynamic field which builds upon current and future therapies, real-world evaluations of individual and combined therapeutics, and the potential incorporation of effective gene editing and gene additive technologies.


Asunto(s)
Carcinoma Hepatocelular , Colestasis , Hepatopatías , Neoplasias Hepáticas , Carcinoma Hepatocelular/complicaciones , Niño , Colestasis/metabolismo , Humanos , Hepatopatías/etiología , Hepatopatías/genética , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/genética , Prurito/etiología
12.
Hepatology ; 76(2): 429-444, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35133671

RESUMEN

BACKGROUND AND AIMS: To date, no pharmacotherapy exists for pediatric NAFLD. Losartan, an angiotensin II receptor blocker, has been proposed as a treatment due to its antifibrotic effects. APPROACH AND RESULTS: The Nonalcoholic Steatohepatitis Clinical Research Network conducted a multicenter, double-masked, placebo-controlled, randomized clinical trial in children with histologically confirmed NAFLD at 10 sites (September 2018 to April 2020). Inclusion criteria were age 8-17 years, histologic NAFLD activity score ≥ 3, and serum alanine aminotransferase (ALT) ≥ 50 U/l. Children received 100 mg of losartan or placebo orally once daily for 24 weeks. The primary outcome was change in ALT levels from baseline to 24 weeks, and the preset sample size was n = 110. Treatment effects were assessed using linear regression of change in treatment group adjusted for baseline value. Eighty-three participants (81% male, 80% Hispanic) were randomized to losartan (n = 43) or placebo (n = 40). During an enrollment pause, necessitated by the 2019 coronavirus pandemic, an unplanned interim analysis showed low probability (7%) of significant group difference. The Data and Safety Monitoring Board recommended early study termination. Baseline characteristics were similar between groups. The 24-week change in ALT did not differ significantly between losartan versus placebo groups (adjusted mean difference: 1.1 U/l; 95% CI = -30.6, 32.7; p = 0.95), although alkaline phosphatase decreased significantly in the losartan group (adjusted mean difference: -23.4 U/l; 95% CI = -41.5, -5.3; p = 0.01). Systolic blood pressure decreased in the losartan group but increased in placebo (adjusted mean difference: -7.5 mm Hg; 95% CI = -12.2, -2.8; p = 0.002). Compliance by pill counts and numbers and types of adverse events did not differ by group. CONCLUSIONS: Losartan did not significantly reduce ALT in children with NAFLD when compared with placebo.


Asunto(s)
Hipertensión , Enfermedad del Hígado Graso no Alcohólico , Adolescente , Antagonistas de Receptores de Angiotensina/uso terapéutico , Presión Sanguínea , Niño , Método Doble Ciego , Femenino , Humanos , Hipertensión/tratamiento farmacológico , Losartán/efectos adversos , Losartán/uso terapéutico , Masculino , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Resultado del Tratamiento
13.
J Lipid Res ; 63(9): 100261, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35934110

RESUMEN

Cyp2c70 is the liver enzyme in rodents responsible for synthesis of the primary 6-hydroxylated muricholate bile acid (BA) species. Cyp2c70 KO mice are devoid of protective, hydrophilic muricholic acids, leading to a more human-like BA composition and subsequent cholestatic liver injury. Pharmacological inhibition of the ileal BA transporter (IBAT) has been shown to be therapeutic in cholestatic models. Here, we aimed to determine if IBAT inhibition with SC-435 is protective in Cyp2c70 KO mice. As compared to WT mice, we found male and female Cyp2c70 KO mice exhibited increased levels of serum liver injury markers, and our evaluation of liver histology revealed increased hepatic inflammation, macrophage infiltration, and biliary cell proliferation. We demonstrate serum and histologic markers of liver damage were markedly reduced with SC-435 treatment. Additionally, we show hepatic gene expression in pathways related to immune cell activation and inflammation were significantly upregulated in Cyp2c70 KO mice and reduced to levels indistinguishable from WT with IBAT inhibition. In Cyp2c70 KO mice, the liver BA content was significantly increased, enriched in chenodeoxycholic acid, and more hydrophobic, exhibiting a hydrophobicity index value and red blood cell lysis properties similar to human liver BAs. Furthermore, we determined IBAT inhibition reduced the total hepatic BA levels but did not affect overall hydrophobicity of the liver BAs. These findings suggest that there may be a threshold in the liver for pathological accretion of hydrophobic BAs and reducing hepatic BA accumulation can be sufficient to alleviate liver injury, independent of BA pool hydrophobicity.


Asunto(s)
Colestasis , Hígado , Animales , Ácidos y Sales Biliares/metabolismo , Proteínas Portadoras , Ácido Quenodesoxicólico/metabolismo , Colestasis/metabolismo , Óxidos N-Cíclicos , Femenino , Humanos , Inflamación/metabolismo , Hígado/metabolismo , Masculino , Glicoproteínas de Membrana , Ratones , Tropanos
14.
J Pediatr Gastroenterol Nutr ; 74(1): 96-103, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34694263

RESUMEN

OBJECTIVE: To evaluate neurodevelopmental status among children with inherited cholestatic liver diseases with native liver and variables predictive of impairment. METHODS: Participants with Alagille syndrome (ALGS), progressive familial intrahepatic cholestasis (PFIC), and alpha 1 antitrypsin deficiency (A1AT) enrolled in a longitudinal, multicenter study and completed the Wechsler Preschool and Primary Scale of Intelligence-III or Intelligence Scale for Children-IV. Full Scale Intelligence Quotient (FSIQ) was analyzed continuously and categorically (>100, 85-99, 70-84, <70). Univariate linear regression was performed to study association between FSIQ and risk factors, stratified by disease. RESULTS: Two hundred and fifteen completed testing (ALGS n = 70, PFIC n = 43, A1AT n = 102); median age was 7.6 years (3.0-16.9). Mean FSIQ in ALGS was lower than A1AT (94 vs 101, P = 0.01). Frequency of FSIQ < 85 (>1 standard deviation [SD] below average) was highest in ALGS (29%) versus 18.6% in PFIC and 12.8% in A1AT, and was greater than expected in ALGS based on normal distribution (29% vs 15.9%, P = 0.003). ALGS scored significantly lower than test norms in almost all Wechsler composites; A1AT scored lower on Working Memory and Processing Speed; PFIC was not different from test norms. Total bilirubin, alkaline phosphatase, albumin, hemoglobin, and parental education were significantly associated with FSIQ. CONCLUSIONS: Patients with ALGS are at increased risk of lower FSIQ, whereas our data suggest A1AT and PFIC are not. A1AT and ALGS appear vulnerable to working memory and processing speed deficits suggestive of attention/executive function impairment. Malnutrition, liver disease severity, and sociodemographic factors appear related to FSIQ deficits, potentially identifying targets for early interventions.


Asunto(s)
Síndrome de Alagille , Colestasis Intrahepática , Colestasis , Síndrome de Alagille/complicaciones , Síndrome de Alagille/genética , Niño , Preescolar , Humanos , Escalas de Wechsler
15.
Pediatr Transplant ; 25(7): e14084, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34288298

RESUMEN

BACKGROUND: Pediatric acute liver failure (PALF) remains an enigmatic process of rapid end-organ dysfunction associated with a variety of pathologic conditions though the predominant cause is indeterminate. A growing body of research has identified mutations in the NBAS gene to be associated with recurrent acute liver failure and multi-systemic disease including short stature, skeletal dysplasia, facial dysmorphism, immunologic abnormalities, and Pelger-Huët anomaly. METHODS AND RESULTS: Here, we describe a 4-year-old girl who presented with dehydration in the setting of acute gastroenteritis and fever but went on to develop PALF on day 2 of hospitalization. She clinically recovered with supportive measures, but after discharge, had at least 2 additional episodes of PALF. Ultimately, she underwent liver transplant and her recurrent episodes of PALF did not recur throughout a 6-year follow-up period. Whole-exome sequencing post-liver transplant initially revealed two variants of uncertain significance in the NBAS gene. Parental studies confirmed the c.1549C > T(p.R517C; now likely pathogenic) variant from her mother and a novel c.4646T > C(p.L1549P) variant from her father. In silico analyses predicted these variants to have a deleterious effect on protein function. Consistent with previously characterized NBAS mutation-associated disease (NMAD), our patient demonstrated the following features: progeroid facial features, hypoplasia of the 12th ribs, Pelger-Huët anomaly on peripheral blood smear, and abnormal B and NK cell function. CONCLUSION: Altogether, we describe a novel pathogenic variant in the NBAS gene of a patient with NMAD and report the resolution of recurrent PALF secondary to NMAD following liver transplantation.


Asunto(s)
Fallo Hepático Agudo/genética , Fallo Hepático Agudo/cirugía , Trasplante de Hígado , Proteínas de Neoplasias/genética , Preescolar , Femenino , Humanos , Mutación , Recurrencia
16.
J Pediatr Gastroenterol Nutr ; 72(5): 654-660, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33720099

RESUMEN

OBJECTIVES: Cholestasis is caused by a wide variety of etiologies, often genetic in origin. Broad overlap in clinical presentations, particularly in newborns, renders prioritizing diagnostic investigations challenging. In this setting, a timely, comprehensive assessment using a multigene panel by a clinical diagnostic laboratory would likely prove useful. We summarize initial findings from a testing program designed to discover genetic causes of cholestasis. METHODS: A neonatal/adult sequencing panel containing 66 genes (originally 57; nine added March 2017) relevant to cholestasis was used. A broad range of eligible patients were enrolled with current/history of cholestasis without an identified cause, or unexplained chronic liver disease. DNA sequencing utilized a custom-designed capture library, and variants were classified and reported as benign, likely benign, variant of unknown significance (VOUS), likely pathogenic (LP), or pathogenic (P), according to the clinical interpretation workflow at EGL Genetics (Tucker, GA). RESULTS: A total of 2433 samples were submitted between February 2016 and December 2017; 2171 results were reported. Median turnaround time was 21 days. Results from the 2171 subjects (57% <1 year old) included 583 P variants, 79 LP variants, and 3117 VOUS; 166 P/LP variants and 415 VOUS were novel. The panel's overall diagnostic yield was 12% (n = 265/2171) representing 32 genes. The top five genetic diagnoses for the group, in order: JAG1 + NOTCH2 (Alagille syndrome), ABCB11, SERPINA1, ABCB4, and POLG. CONCLUSIONS: These findings support the utility of comprehensive rapid multigene testing in diagnosing cholestasis and highlight the evolving understanding of genetic variants contributing to the pathogenesis of cholestasis.


Asunto(s)
Colestasis , Niño , Colestasis/diagnóstico , Colestasis/genética , Humanos , Lactante , Recién Nacido , Mutación , Análisis de Secuencia de ADN , Adulto Joven
18.
Hepatology ; 69(3): 1206-1218, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30076624

RESUMEN

Cirrhotic cardiomyopathy (CCM), a comorbidity of end-stage cirrhotic liver disease, remains uncharacterized in children, largely because of a lack of an established pediatric definition. The aim of this retrospective cohort analysis is to derive objective two-dimensional echocardiographic (2DE) criteria to define CCM associated with biliary atresia (BA), or BA-CCM, and correlate presence of BA-CCM with liver transplant (LT) outcomes in this population. Using receiver operating characteristic (ROC) curve analysis, optimal cut-off values for left ventricular (LV) geometrical parameters that were highly sensitive and specific for the primary outcomes: A composite of serious adverse events (CSAE) and peritransplant death were determined. These results were used to propose a working definition for BA-CCM: (1) LV mass index (LVMI) ≥95 g/m2.7 or (2) relative wall thickness of LV ≥0.42. Applying these criteria, BA-CCM was found in 34 of 69 (49%) patients with BA listed for LT and was associated with increased multiorgan dysfunction, mechanical and vasopressor support, and longer intensive care unit (ICU) and hospital stays. BA-CCM was present in all 4 waitlist deaths, 7 posttransplant deaths, and 20 patients with a CSAE (P < 0.01). On multivariable regression analysis, BA-CCM remained independently associated with both death and a CSAE (P < 0.01). Utilizing ROC analysis, LVMI was found to be a stronger predictor for adverse outcomes compared with current well-established markers, including Pediatric End-Stage Liver Disease (PELD) score. Conclusion: BA-CCM is highly sensitive and specific for morbidity and mortality in children with BA listed for LT. 2DE screening for BA-CCM may provide pertinent clinical information for prioritization and optimal peritransplant management of these children.


Asunto(s)
Atresia Biliar/complicaciones , Cardiomiopatías/complicaciones , Cardiomiopatías/diagnóstico por imagen , Cirrosis Hepática/complicaciones , Cirrosis Hepática/cirugía , Trasplante de Hígado , Preescolar , Estudios de Cohortes , Ecocardiografía , Femenino , Humanos , Lactante , Masculino , Estudios Retrospectivos , Resultado del Tratamiento
19.
Hepatology ; 69(1): 245-257, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30063078

RESUMEN

Osteopenia and bone fractures are significant causes of morbidity in children with cholestatic liver disease. Dual-energy X-ray absorptiometry (DXA) analysis was performed in children with intrahepatic cholestatic diseases who were enrolled in the Longitudinal Study of Genetic Causes of Intrahepatic Cholestasis in the Childhood Liver Disease Research Network. DXA was performed on participants aged >5 years (with native liver) diagnosed with bile acid synthetic disorder (BASD), alpha-1 antitrypsin deficiency (A1AT), chronic intrahepatic cholestasis (CIC), and Alagille syndrome (ALGS). Weight, height, and body mass index Z scores were lowest in CIC and ALGS. Total bilirubin (TB) and serum bile acids (SBA) were highest in ALGS. Bone mineral density (BMD) and bone mineral content (BMC) Z scores were significantly lower in CIC and ALGS than in BASD and A1AT (P < 0.001). After anthropometric adjustment, bone deficits persisted in CIC but were no longer noted in ALGS. In ALGS, height-adjusted and weight-adjusted subtotal BMD and BMC Z scores were negatively correlated with TB (P < 0.001) and SBA (P = 0.02). Mean height-adjusted and weight-adjusted subtotal BMC Z scores were lower in ALGS participants with a history of bone fractures. DXA measures did not correlate significantly with biliary diversion status. Conclusion: CIC patients had significant bone deficits that persisted after adjustment for height and weight and generally did not correlate with degree of cholestasis. In ALGS, low BMD and BMC reference Z scores were explained by poor growth. Anthropometrically adjusted DXA measures in ALGS correlate with markers of cholestasis and bone fracture history. Reduced bone density in this population is multifactorial and related to growth, degree of cholestasis, fracture vulnerability, and contribution of underlying genetic etiology.


Asunto(s)
Densidad Ósea , Colestasis/etiología , Trastornos del Crecimiento/etiología , Hepatopatías/complicaciones , Hepatopatías/fisiopatología , Absorciometría de Fotón , Adolescente , Niño , Enfermedad Crónica , Correlación de Datos , Femenino , Humanos , Estudios Longitudinales , Masculino
20.
Hepatology ; 70(3): 899-910, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30664273

RESUMEN

Biliary atresia (BA) is the most common cause of end-stage liver disease in children and the primary indication for pediatric liver transplantation, yet underlying etiologies remain unknown. Approximately 10% of infants affected by BA exhibit various laterality defects (heterotaxy) including splenic abnormalities and complex cardiac malformations-a distinctive subgroup commonly referred to as the biliary atresia splenic malformation (BASM) syndrome. We hypothesized that genetic factors linking laterality features with the etiopathogenesis of BA in BASM patients could be identified through whole-exome sequencing (WES) of an affected cohort. DNA specimens from 67 BASM subjects, including 58 patient-parent trios, from the National Institute of Diabetes and Digestive and Kidney Diseases-supported Childhood Liver Disease Research Network (ChiLDReN) underwent WES. Candidate gene variants derived from a prespecified set of 2,016 genes associated with ciliary dysgenesis and/or dysfunction or cholestasis were prioritized according to pathogenicity, population frequency, and mode of inheritance. Five BASM subjects harbored rare and potentially deleterious biallelic variants in polycystic kidney disease 1 like 1 (PKD1L1), a gene associated with ciliary calcium signaling and embryonic laterality determination in fish, mice, and humans. Heterozygous PKD1L1 variants were found in 3 additional subjects. Immunohistochemical analysis of liver from the one BASM subject available revealed decreased PKD1L1 expression in bile duct epithelium when compared to normal livers and livers affected by other noncholestatic diseases. Conclusion: WES identified biallelic and heterozygous PKD1L1 variants of interest in 8 BASM subjects from the ChiLDReN data set; the dual roles for PKD1L1 in laterality determination and ciliary function suggest that PKD1L1 is a biologically plausible, cholangiocyte-expressed candidate gene for the BASM syndrome.


Asunto(s)
Anomalías Múltiples/genética , Atresia Biliar/genética , Proteínas de la Membrana/genética , Enfermedades Renales Poliquísticas/genética , Bazo/anomalías , Anomalías Múltiples/patología , Atresia Biliar/patología , Niño , Bases de Datos Factuales , Femenino , Regulación del Desarrollo de la Expresión Génica , Variación Genética , Humanos , Lactante , Recién Nacido , Masculino , Enfermedades Renales Poliquísticas/patología , Estudios Retrospectivos , Síndrome , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA