Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Environ Res ; 232: 116342, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37290616

RESUMEN

In the context of climate change leading to water scarcity for many people in the world, the treatment of municipal wastewater becomes a necessity. However, the reuse of this water requires secondary and tertiary treatment processes to reduce or eliminate a load of dissolved organic matter and various emerging contaminants. Microalgae have shown hitherto high potential applications of wastewater bioremediation thanks to their ecological plasticity and ability to remediate several pollutants and exhaust gases from industrial processes. However, this requires appropriate cultivation systems allowing their integration into wastewater treatment plants at appropriate insertion costs. This review aims to present different open and closed systems currently used in the treatment of municipal wastewater by microalgae. It provides an exhaustive approach to wastewater treatment systems using microalgae, integrating the most suitable used microalgae species and the main pollutants present in the treatment plants, with an emphasis on emerging contaminants. The remediation mechanisms as well as the capacity to sequester exhaust gases were also described. The review examines constraints and future perspectives of microalgae cultivation systems in this line of research.


Asunto(s)
Contaminantes Ambientales , Microalgas , Humanos , Aguas Residuales , Biomasa , Gases , Minerales
2.
J Environ Manage ; 303: 114188, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34875565

RESUMEN

Treatment of olive mill wastewater (OMW) has received considerable research globally due to its influence on the technical, economic, and environmental sustainability of wastewater biogas production. This work presents a novel combined biological process for OMW treatment in terms to produce for the first time, treated OMW and a valuable microalgae biomass. The process involves anaerobic co-digestion (AD), a low cut-off membrane ultra-filtration (UF) and a subsequent Scenedesmus sp. culture. The AD of OMW was conducted at high initial COD ranging from 28 to 38 g/L using an up-flow anaerobic fixed bed bio-reactor (300 L). Results revealed that the maximum biogas production was about 0.507 L/g CODintroduced.day containing 73% of methane corresponding to a methane yield of 0.370 L/g CODintroduced.day obtained at an organic loading rate of 4.58 g COD/L.day. High removal levels of COD, total phenolic compounds, and total suspended solids in the anaerobic liquid digestate (ALD) were achieved after AD and UF. Scenedesmus sp. was then cultivated on the ultra-filtrated ALD. A maximum biomass productivity of 0.15 g/L.day was recorded when Scenedesmus sp. is grown on 25% of ultra-filtrated ALD with a maximum nitrogen removal rate of 15.18 mg/L.day and an almost total elimination of phosphorus and phenolic compounds.


Asunto(s)
Microalgas , Olea , Purificación del Agua , Anaerobiosis , Digestión , Metano
3.
Archaea ; 2021: 8888712, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33574733

RESUMEN

Microbial production of bioplastics, derived from poly(3-hydroxybutyrate) (PHB), have provided a promising alternative towards plastic pollution. Compared to other extremophiles, halophilic archaea are considered as cell factories for PHB production by using renewable, inexpensive carbon sources, thus decreasing the fermentation cost. This study is aimed at screening 33 halophilic archaea isolated from three enrichment cultures from Tunisian hypersaline lake, Chott El Jerid, using starch as the sole carbon source by Nile Red/Sudan Black staining and further confirmed by PCR amplification of phaC and phaE polymerase genes. 14 isolates have been recognized as positive candidates for PHA production and detected during both seasons. The identification of these strains through 16S rRNA gene analyses showed their affiliation to Halorubrum, Natrinema, and Haloarcula genera. Among them, three PHB-producing strains, CEJ34-14, CEJ5-14, and CEJ48-10, related to Halorubrum chaoviator, Natrinema pallidum, and Haloarcula tradensis were found to be the best ones reaching values of 9.25, 7.11, and 1.42% of cell dry weight (CDW), respectively. Our findings highlighted that Halorubrum, Natrinema, and Haloarcula genera were promising candidates for PHB production using soluble starch as a carbon source under high salinity (250 g L-1 NaCl).


Asunto(s)
Haloarcula , Halorubrum , Ácido 3-Hidroxibutírico , Carbono , Halobacteriaceae , Hidroxibutiratos , Poliésteres , ARN Ribosómico 16S/genética , Almidón
4.
J Sci Food Agric ; 101(13): 5508-5519, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33682135

RESUMEN

BACKGROUND: The three-phase extraction process of olive oil produces highly contaminated wastewater (OMW). The elimination of this toxic by-product is an important environmental issue that requires the development of an appropriate management solution. The cultivation of microalgae using OMW as growth medium was therefore studied using single (the culture medium was formed by 0% to 80% ultrafiltered olive mill wastewater (OMUF) or OMW added to BG11) and two-stage strategies (microalgae were firstly cultivated in the BG11 medium. In the second stage, 40% and 80% of OMUF and OMW were added to the culture). In this work, biodegradation of OMW and subsequent extraction of lipid and antioxidant molecules was investigated as an ecofriendly method for the bioremediation and valorization of OMW. RESULTS: For two-stage cultivation, OMUF and OMW stress enhanced the intracellular amount of polyphenol accumulated in Scenedesmus sp. and exhibited the highest 2, 2-diphenyl-1- picrylhydrazyl radical (DPPH) and 2,2'-azino-bis (3-ethylbenzoline-6-sulfonate) radical (ABTS) scavenging ability compared with single-stage cultivation. Moreover, the lipid profile is dominated by polyunsaturated acids. In the single-stage cultivation, the Ch a, Ch b, carotenoid, carbohydrate and lipid content of 2.57, 7.4, 1.69, 368, and 644 g kg-1 were observed in 40% OMUF added culture, respectively, along with high biomass productivity and 58% of polyphenol removal. Moreover, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that the biomass of Scenedesmus sp. cultured on 40% OMUF did not show any toxic effect, making it an efficient strategy. CONCLUSION: The results indicate that Scenedesmus sp. is a promising microalga for the biotreatment of OMW and the extraction of bioactive metabolites. © 2021 Society of Chemical Industry.


Asunto(s)
Microalgas/crecimiento & desarrollo , Microalgas/metabolismo , Polifenoles/metabolismo , Scenedesmus/crecimiento & desarrollo , Scenedesmus/metabolismo , Aguas Residuales/análisis , Biodegradación Ambiental , Manipulación de Alimentos , Microalgas/química , Aceite de Oliva/química , Polifenoles/análisis , Scenedesmus/química , Residuos/análisis
5.
Extremophiles ; 22(5): 811-823, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30014241

RESUMEN

Chott El Jerid is the largest hypersaline ephemeral lake in southern Tunisian Sahara desert and is one of the biggest depressions at the North of Africa. This study aimed to investigate the diversity and abundance of microbial communities inhabiting Chott El Jerid during wet season (when it was flooded), using molecular methods [Illumina Miseq sequencing, DGGE and qPCR (qPCR)]. 16S rRNA gene analyses revealed that bacterial community was dominated by Proteobacteria (especially Ralstonia species), followed by Firmicutes, Bacteroidetes, Cyanobacteria, Actinobacteria and Verrucomicrobia. The results obtained using prokaryotic universal primers showed low relative abundance of Archaea dominated by few OTUs related to Methanosarcinaceae and Methanomassiliicoccaceae families and the presence of sulfate-reducing Archaea affiliated with Archaeoglobus. However, the results obtained using Archaea-specific primers showed that archaeal community was mainly composed of aerobic Halobacteria (especially Halorubrum species) and anaerobic members of Methanomicrobia. These results also provided evidence for the presence of members of the genus Halohasta in this environment. qPCR results revealed that Archaea were more abundant in studied samples than Bacteria. The sulfate-reducing Bacteria were also found abundant (~ one-third of the bacterial community) and outnumbered methanogens, suggesting their potential important role in this sulfate-rich and hypersaline ecosystem.


Asunto(s)
Lagos/microbiología , Microbiota , Salinidad , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Ambientes Extremos , Lagos/química
6.
Mol Biol Rep ; 45(5): 1297-1309, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30062501

RESUMEN

The screening of bacteria and archaea from Chott El Jerid, a hypersaline lake in the south of Tunisia, led to the isolation of 68 extremely halophilic prokaryotes growing in media with 15-25% of salt. Assessment of 68 partial 16S rRNA analyzed by amplified rDNA restriction analysis (ARDRA) revealed 15 different bacterial and archaeal taxonomic groups. Based on ARDRA results, phenotypic and hydrolytic activity tests, 20 archaeal and 6 bacterial isolates were selected for sequencing. The halophilic isolates were identified as members of the genera: Salicola, Bacillus, Halorubrum, Natrinema and Haloterrigena. Most of these isolates are able to produce hydrolytic enzymes such as amylase, protease, lipase, cellulase, xylanase, pectinase and some of them showed combined activities. Natrinema genus is an excellent candidate for lipase production. These results indicated that the extremely halophilic archaea and bacteria from Chott El Jerid are a potential source of hydrolytic enzymes and may possess commercial value.


Asunto(s)
Archaea/enzimología , Bacterias/enzimología , Halobacteriales/enzimología , Archaea/clasificación , Archaea/aislamiento & purificación , Bacterias/clasificación , Bacterias/aislamiento & purificación , Biodiversidad , Clasificación/métodos , Enzimas/análisis , Enzimas/clasificación , Halobacteriales/clasificación , Halobacteriales/aislamiento & purificación , Lagos , Filogenia , ARN Ribosómico 16S/genética , Salinidad , Análisis de Secuencia de ADN , Túnez , Microbiología del Agua
7.
Curr Microbiol ; 74(4): 449-454, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28213662

RESUMEN

Three sulfate-reducing bacterial strains designated SM40T, SM41, and SM43 were isolated from marine sediment in the region of Skhira located in the Gulf of Gabes (Tunisia). These strains grew in anaerobic media with phosphogypsum as a sulfate source and sodium lactate as an electron and carbon source. One of them, strain SM40T, was characterized by phenotypic and phylogenetic methods. Cells were ovoid, Gram-stain-negative and non-motile. The temperature limits for growth were 10 and 55 °C with an optimum at 35 °C and the pH range was 6.5-8.1 with an optimum at pH 7.5. Growth was observed at salinities ranging from 10 to 80 g NaCl l-1 with an optimum at 30 g NaCl l-1. Strain SM40T was able to utilize butanol, ethanol, formate, L-glucose, glycerol, lactate, propanol, propionate, and pyruvate as electron donors for the reduction of sulfate, sulfite, or thiosulfate to H2S. Without electron acceptors, strain SM40T fermented butanol and pyruvate. The DNA G+C content of strain SM40T was 52.6 mol %. Phylogenetic analysis based on the 16S rRNA gene sequence of the isolate revealed that strain SM40T was closely related to the species in the genus Desulfobulbus of the family Desulfobulbaceae. The sequence similarity between strain SM40 and Desulfobulbus marinus was 95.4%. The phylogenetic analysis, DNA G+C content, and differences in substrate utilization suggested that strain SM40 represents a new species of the genus Desulfobulbus, D. aggregans sp. nov. The type strain is strain SM40T (=DSM 28693T = JCM 19994T).


Asunto(s)
Sedimentos Geológicos/microbiología , Bacterias Reductoras del Azufre/metabolismo , Técnicas de Tipificación Bacteriana , Composición de Base/genética , ADN Bacteriano/genética , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Bacterias Reductoras del Azufre/clasificación , Bacterias Reductoras del Azufre/genética
8.
Extremophiles ; 20(2): 125-38, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26724953

RESUMEN

Prokaryotic diversity was investigated in a Tunisian salt lake, Chott El Jerid, by quantitative real-time PCR, denaturing gradient gel electrophoresis (DGGE) fingerprinting methods targeting the 16S rRNA gene and culture-dependent methods. Two different samples S1-10 and S2-10 were taken from under the salt crust of Chott El Jerid in the dry season. DGGE analysis revealed that bacterial sequences were related to Firmicutes, Proteobacteria, unclassified bacteria, and Deinococcus-Thermus phyla. Anaerobic fermentative and sulfate-reducing bacteria were also detected in this ecosystem. Within the domain archaea, all sequences were affiliated to Euryarchaeota phylum. Quantitative real-time PCR showed that 16S rRNA gene copy numbers of bacteria was 5 × 10(6) DNA copies g(-1) whereas archaea varied between 5 × 10(5) and 10(6) DNA copies g(-1) in these samples. Eight anaerobic halophilic fermentative bacterial strains were isolated and affiliated with the species Halanaerobium alcaliphilum, Halanaerobium saccharolyticum, and Sporohalobacter salinus. These data showed an abundant and diverse microbial community detected in the hypersaline thalassohaline environment of Chott El Jerid.


Asunto(s)
Lagos/microbiología , Microbiota , Salinidad , Tolerancia a la Sal , Archaea/aislamiento & purificación , Deinococcus/aislamiento & purificación , Firmicutes/aislamiento & purificación , Lagos/química , Proteobacteria/aislamiento & purificación , ARN Ribosómico 16S/genética , Thermus/aislamiento & purificación , Túnez
9.
Int J Syst Evol Microbiol ; 65(Pt 2): 543-548, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25389147

RESUMEN

Halophilic, obligately anaerobic, Gram-stain-negative bacterial strains were isolated from a sediment sample taken from under the salt crust of El-Jerid hypersaline lake in southern Tunisia by using tryptone or glucose as the substrate. One strain, CEJFT1B(T), was characterized phenotypically and phylogenetically. Cells were non-motile, non-spore-forming, short rods. Strain CEJFT1B(T) was able to grow in the presence of 5-30 % (w/v) NaCl (optimum 20 %) and at 30-60 °C (optimum 45 °C). It grew at pH 5.5-7.8 and the optimum pH for growth was 6.8. The isolate required yeast extract for growth. Substrates utilized by strain CEJFT1B(T) as the sole carbon source included glucose, fructose, sucrose, pyruvate, Casamino acids and starch. Individual amino acids such as glutamate, lysine, methionine, serine, tyrosine, and amino acid mixtures formed by the Stickland reaction such as alanine-glycine, valine-proline, leucine-proline, isoleucine-proline were also utilized. Products of glucose fermentation were acetate (major product), butyrate, H2 and CO2. The genomic DNA G+C content of strain CEJFT1B(T) was 32.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CEJFT1B(T) should be assigned to the genus Sporohalobacter. The sequence similarity between strain CEJFT1B(T) and Sporohalobacter lortetii was 98.5 %, but DNA-DNA hybridization between the two strains revealed a relatedness value of 56.4 %, indicating that they are not related at the species level. The combination of phylogenetic analysis, DNA-DNA hybridization data, and differences in substrate utilization support the view that strain CEJFT1B(T) represents a novel species of the genus Sporohalobacter, for which the name Sporohalobacter salinus sp. nov. is proposed. The type strain is CEJFT1B(T) ( = DSM 26781(T) = JCM 19279(T)).


Asunto(s)
Bacterias Anaerobias Gramnegativas/clasificación , Lagos/microbiología , Filogenia , Salinidad , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Fermentación , Sedimentos Geológicos/microbiología , Bacterias Anaerobias Gramnegativas/genética , Bacterias Anaerobias Gramnegativas/aislamiento & purificación , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Túnez
10.
Bioprocess Biosyst Eng ; 38(7): 1381-92, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25716001

RESUMEN

Microalgae as feedstock for biofuel production have attracted serious consideration as an important sustainable source of energy. For biodiesel production with microalgae, a series of consecutive processes should be performed as selection of adequate microalgal strains, mass culture, cell harvesting, oil extraction and transesterification. The aim of this study was to investigate the growth and lipid accumulation of a new isolated marine microalgal strain by optimizing culture medium composition and applying different stressful culture conditions. Microalga CTM 20023 was isolated from the evaporating salt-ponds at Sfax, Tunisia, using serial-dilution technique from enriched cultures. Phylogenetic analysis based on SSU rDNA and rbcL-3P sequences attributed this isolate to a new species of the Amphora genus. This wild strain possesses rapid gravity sedimentation of 2.91 m h(-1), suitable for an easy and low-cost biomass harvest. The optimization of the composition of the culture medium through statistical experimental designs improved the specific growth rate of Amphora sp. from 0.149 to 0.262 day(-1) and increased its 15-day culture biomass production from 465 to 2200 mg L(-1) (dw) and its lipid content from 140 to 370 mg g(-1) (dw). Highest biomass productivity of 178 mg L(-1) day(-1) was achieved at the 10th day of culture. Highest lipid content of 530 mg g(-1) (dw) was obtained under phosphorus starvation and 64.34% of these lipids were saturated fatty acids. A first growth stage, in optimized condition, would thus offer the maximum productivity for an algal biomass feed stream, followed by second stressful stage for lipid accumulation, thus suitable for biodiesel production.


Asunto(s)
Biocombustibles , Diatomeas/metabolismo , Medios de Cultivo , Diatomeas/clasificación , Ácidos Grasos/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Filogenia
11.
J Environ Sci (China) ; 30: 102-12, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25872714

RESUMEN

The present work presents a study of the biological treatment of fish processing wastewater at salt concentration of 55 g/L. Wastewater was treated by both continuous stirred-tank reactor (CSTR) and membrane bioreactor (MBR) during 50 and 100 days, respectively. These biological processes involved salt-tolerant bacteria from natural hypersaline environments at different organic loading rates (OLRs). The phylogenetic analysis of the corresponding excised DGGE bands has demonstrated that the taxonomic affiliation of the most dominant species includes Halomonadaceae and Flavobacteriaceae families of the Proteobacteria (Gamma-proteobacteria class) and the Bacteroidetes phyla, respectively. The results of MBR were better than those of CSTR in the removal of total organic carbon with efficiencies from 97.9% to 98.6%. Nevertheless, salinity with increasing OLR aggravates fouling that requires more cleaning for a membrane in MBR while leads to deterioration of sludge settleability and effluent quality in CSTR.


Asunto(s)
Bacterias/aislamiento & purificación , Manipulación de Alimentos , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/análisis , Aguas Residuales/microbiología , Contaminantes Químicos del Agua/análisis , Bacterias/genética , ADN Bacteriano/genética , Electroforesis en Gel de Gradiente Desnaturalizante , Monitoreo del Ambiente , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , ARN Ribosómico 18S/genética , Salinidad , Alimentos Marinos , Análisis de Secuencia de ADN , Túnez
12.
Int J Syst Evol Microbiol ; 64(Pt 10): 3353-3359, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25013226

RESUMEN

A phylogenetically novel proteobacterium, strain Shr3(T), was isolated from sand gravels collected from the eastern margin of the Sahara Desert. The isolation strategy targeted bacteria filterable through 0.2-µm-pore-size filters. Strain Shr3(T) was determined to be a Gram-negative, aerobic, non-motile, filamentous bacterium. Oxidase and catalase reactions were positive. Strain Shr3(T) showed growth on R2A medium, but poor or no growth on nutrient agar, trypticase soy agar and standard method agar. The major isoprenoid quinone was menaquinone-7. The dominant cellular fatty acids detected were C16:1ω5c and C16:0, and the primary hydroxy acid present was C12:0 3-OH. The DNA G+C content was 54.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Shr3(T) was affiliated with an uncultivated lineage of the phylum Proteobacteria; the nearest known type strain, with 83% sequence similarity, was Desulfomicrobium orale DSM 12838(T) in the class Deltaproteobacteria. The isolate and closely related environmental clones formed a novel class-level clade in the phylum Proteobacteria with high bootstrap support (96-99%). Based on these results, the novel class Oligoflexia classis nov. in the phylum Proteobacteria and the novel genus and species Oligoflexus tunisiensis gen. nov., sp. nov. are proposed for strain Shr3(T), the first cultivated representative of the Oligoflexia. The type strain of Oligoflexus tunisiensis is Shr3(T) ( = JCM 16864(T) = NCIMB 14846(T)). We also propose the subordinate taxa Oligoflexales ord. nov. and Oligoflexaceae fam. nov. in the class Oligoflexia.


Asunto(s)
Filogenia , Proteobacteria/clasificación , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Clima Desértico , Ácidos Grasos/química , Bacterias Gramnegativas/clasificación , Datos de Secuencia Molecular , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Túnez , Vitamina K 2/análogos & derivados , Vitamina K 2/química
13.
J Sci Food Agric ; 94(8): 1628-38, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24301903

RESUMEN

BACKGROUND: Coastal countries that suffer from a scarcity of water, such as Tunisia, have to cultivate marine microalgae on non-arable land in order to produce feedstock and overcome their demands of nutrition and energy. In this framework, a green microalga, CTM 20019, was isolated, identified as Picochlorum sp. and tested for its lipid production. RESULTS: The dry weight of Picochlorum sp. is composed of 163 g kg(-1) lipids, 225 g kg(-1) total sugars, 440 g kg(-1) proteins and 112 g kg(-1) ash rich in potassium, calcium, iron, magnesium and zinc. Gas chromatography-mass spectrometry analysis showed that the main fatty acids were palmitic acid (29%), linolenic acid (26.5%), linoleic acid (23.5%), hexadecatrienoic acid (11%) and hexadecadienoic acid (8.5%). As it is known that culture conditions greatly influence the composition of microalgae, the experiments were designed to optimise the composition of the medium in order to increase Picochlorum sp. growth from OD680nm = 0.53 to OD680nm = 2.2 and lipid accumulation from 163 g kg(-1) to 190 g kg(-1) . The highest lipid contents of 570 and 585 g kg(-1) were achieved under phosphate starvation and sodium carbonate supplementation, respectively. Under these conditions, the fatty acid profile is dominated by mono-unsaturated and polyunsaturated acids, and is therefore suitable for aqua-culture feeding. However, under high salinity, growth and lipid synthesis are inhibited, and the fatty acids are saturate, and the product is therefore suitable for biodiesel. CONCLUSION: This high lipid content rich in essential fatty acids, omega-6 and omega-3, endorses this wild strain of Picochlorum sp. as a promising feedstock for aqua-culture and human nutrition or for the production of biodiesel. © 2013 Society of Chemical Industry.


Asunto(s)
Chlorophyta/crecimiento & desarrollo , Medios de Cultivo , Lípidos/biosíntesis , Estrés Fisiológico , Alimentación Animal , Animales , Acuicultura/métodos , Carbonatos/administración & dosificación , Chlorophyta/química , Chlorophyta/clasificación , Ácidos Grasos/análisis , Humanos , Lípidos/análisis , Valor Nutritivo , Fosfatos/administración & dosificación , Salinidad , Túnez
14.
Environ Sci Pollut Res Int ; 31(8): 11371-11405, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38180652

RESUMEN

Recent geological, hydrochemical, and mineralogical studies performed on hypersaline salt flats have given insights into similar geo-morphologic features on Mars. These salt-encrusted depressions are widely spread across the Earth, where they are characterized by high salt concentrations, intense UV radiation, high evaporation, and low precipitation. Their surfaces are completely dry in summer; intermittent flooding occurs in winter turning them into transitory hypersaline lakes. Thanks to new approaches such as culture-dependent, culture-independent, and metagenomic-based methods, it is important to study microbial life under polyextreme conditions and understand what lives in these dynamic ecosystems and how they function. Regarding these particular features, new halophilic microorganisms have been isolated from some salt flats and identified as excellent producers of primary and secondary metabolites and granules such as halocins, enzymes, carotenoids, polyhydroxyalkanoates, and exopolysaccharides. Additionally, halophilic microorganisms are implemented in heavy metal bioremediation and hypersaline wastewater treatment. As a result, there is a growing interest in the distribution of halophilic microorganisms around the world that can be looked upon as good models to develop sustainable biotechnological processes for all fields. This review provides insights into diversity, ecology, metabolism, and genomics of halophiles in hypersaline salt flats worldwide as well as their potential uses in biotechnology.


Asunto(s)
Ecosistema , Cloruro de Sodio , Cloruro de Sodio/metabolismo , Ecología , Cloruro de Sodio Dietético , Biotecnología
15.
Probiotics Antimicrob Proteins ; 15(1): 30-43, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35933471

RESUMEN

Probiotics or direct-fed microbials (DFM) have proven strong potential for improving aquaculture sustainability. This study aims to evaluate the effects of dietary supplementation with the DFM Bacillus amyloliquefaciens US573 on growth performance, intestinal morphology, and gut microbiota (GM) of European sea bass. For this purpose, healthy fish were divided into two feeding trials in triplicate of 25 fish in each tank. The fish were fed with a control basal diet or a DFM-supplemented diet for 42 days. Results showed that, while no significant effects on growth performance were observed, the length and abundance of villi were higher in the DFM-fed group. The benefic effects of DFM supplementation included also the absence of cysts formation and the increase in number of goblet cells playing essential role in immune response. Through DNA metabarcoding analysis of GM, 5 phyla and 14 major genera were identified. At day 42, the main microbiome changes in response to B. amyloliquefaciens US573 addition included the significant decrease in abundance of Actinobacteria phylum that perfectly correlates with a decrease in Nocardia genus representatives which represent serious threat in marine and freshwater fish. On the contrary, an obvious dominance of Betaproteobacteria associated with the abundance in Variovorax genus members, known for their ability to metabolize numerous substrates, was recorded. Interestingly, Firmicutes, particularly species affiliated to the genus Sporosarcina with recent promising probiotic potential, were identified as the most abundant. These results suggest that B. amyloliquefaciens US573 can be effectively recommended as health-promoting DFM in European sea bass farming.


Asunto(s)
Bacillus amyloliquefaciens , Lubina , Microbioma Gastrointestinal , Probióticos , Animales , Suplementos Dietéticos/análisis , Intestinos , Dieta/veterinaria , Probióticos/farmacología , Probióticos/análisis , Alimentación Animal/análisis
16.
Front Bioeng Biotechnol ; 10: 1100533, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36686251

RESUMEN

The current research work attempted to investigate, for the first time, the impact of biochar addition, on anaerobic digestion of olive mill wastewater with different initial chemical oxygen demand loads in batch cultures (10 g/L, 15 g/L, and 20 g/L). Methane yields were compared by applying one-way analysis of variance (ANOVA) followed by post-hoc Tukey's analysis. The results demonstrated that adding at 5 g/L biochar to olive mill wastewater with an initial chemical oxygen demand load of 20 g/L increased methane yield by 97.8% and mitigated volatile fatty acid accumulation compared to the control batch. According to the results of microbial community succession revealed by the Illumina amplicon sequencing, biochar supplementation significantly increased diversity of the microbial community and improved the abundance of potential genera involved in direct interspecies electron transfer, including Methanothrix and Methanosarcina. Consequently, biochar can be a promising alternative in terms of the recovery of metabolic activity during anaerobic digestion of olive mill wastewater at a large scale.

17.
Front Microbiol ; 13: 977797, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386625

RESUMEN

Agroforestry (AF) is a promising land-use system to mitigate water deficiency, particularly in semi-arid areas. However, the belowground microbes associated with crops below trees remain seldom addressed. This study aimed at elucidating the effects of olive AF system intercropped with durum wheat (Dw), barely (Ba), chickpea (Cp), or faba bean (Fb) on crops biomass and their soil-rhizosphere microbial networks as compared to conventional full sun cropping (SC) under rainfed conditions. To test the hypothesis, we compared the prokaryotic and the fungal communities inhabiting the rhizosphere of two cereals and legumes grown either in AF or SC. We determined the most suitable annual crop species in AF under low-rainfed conditions. Moreover, to deepen our understanding of the rhizosphere network dynamics of annual crops under AF and SC systems, we characterized the microbial hubs that are most likely responsible for modifying the microbial community structure and the variability of crop biomass of each species. Herein, we found that cereals produced significantly more above-ground biomass than legumes following in descending order: Ba > Dw > Cp > Fb, suggesting that crop species play a significant role in improving soil water use and that cereals are well-suited to rainfed conditions within both types of agrosystems. The type of agrosystem shapes crop microbiomes with the only marginal influence of host selection. However, more relevant was to unveil those crops recruits specific bacterial and fungal taxa from the olive-belowground communities. Of the selected soil physicochemical properties, organic matter was the principal driver in shaping the soil microbial structure in the AF system. The co-occurrence network analyses indicated that the AF system generates higher ecological stability than the SC system under stressful climate conditions. Furthermore, legumes' rhizosphere microbiome possessed a higher resilient capacity than cereals. We also identified different fungal keystones involved in litter decomposition and drought tolerance within AF systems facing the water-scarce condition and promoting crop production within the SC system. Overall, we showed that AF reduces cereal and legume rhizosphere microbial diversity, enhances network complexity, and leads to more stable beneficial microbial communities, especially in severe drought, thus providing more accurate predictions to preserve soil diversity under unfavorable environmental conditions.

18.
Environ Sci Pollut Res Int ; 29(50): 75365-75379, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35653020

RESUMEN

The beneficial effect of compost and compost tea on plant growth and protection is mainly associated with the microbial diversity and the presence of bacteria with plant growth-promoting effect. PGPR are considered as eco-friendly bio-fertilizers that may reduce the use of chemical pesticides and fertilizers. Three composts (AT, A10, and A30) were previously prepared from industrial wastes (olive mill wastewater, olive pomace, coffee ground, and phosphogypsum). In the present study, we isolated three bacterial strains from the compost teas. The phylogenetic identification of these bacterial strains (B.AT, B.A10, and B.A30) showed that they correspond to Serratia liquefaciens (B.AT and B.A10) and Achromobacter spanius (B.A30) species. A further characterization of the PGPR traits of these bacteria showed that they produce siderophore, exopolysaccharides, and IAA. Their effect on potato plant growth, yields, and tuber quality was performed under field culture conditions. Results showed that these strains can be characterized as PGPR, the best effect on potato plant growth was observed with Serratia liquefaciens (B.AT), the best yield and tuber quality was observed with Serratia liquefaciens (B.A10) while bacterial treatment with Achromobacter spanius (B.A30) is a Cd-tolerant PGPR.


Asunto(s)
Compostaje , Plaguicidas , Solanum tuberosum , Achromobacter , Bacterias , Bencenoacetamidas , Cadmio , Café , Fertilizantes , Residuos Industriales , Filogenia , Piperidonas , Sideróforos , Suelo/química , Microbiología del Suelo , , Aguas Residuales
19.
Mar Pollut Bull ; 185(Pt B): 114350, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36435018

RESUMEN

Surface seawater, collected from three fishing harbors during different seasons of the years 2015, 2016 and 2017, were assessed for physico-chemical analyses. Results showed that seawater was mainly polluted by hydrocarbons and some heavy metals. Microbial communities' composition and abundance in the studied harbors were performed using molecular approaches. SSCP analysis indicated the presence of Bacteria, Archaea and Eucarya, with dominance of the bacterial domain. Illumina Miseq analysis revealed that the majority of the sequences were affiliated with Bacteria whereas Archaea were detected at low relative abundance. The bacterial community, dominated by Proteobacteria, Bacteroidetes, Planctomycetes, Cyanobacteria, Firmicutes, Actinobacteria and Chloroflexi phyla, are known to be involved in a variety of biodegradation/biotransformation processes including hydrocarbons degradation and heavy metals resistance. The main objectives of this study are to assess, for the first time, the organic/inorganic pollution in surface seawater of Kerkennah Islands harbors, and to explore the potential of next generation marine microbiome monitoring to achieve the planning coastal managing strategies worldwide.


Asunto(s)
Caza , Microbiota , Islas , Agua de Mar , Archaea , Biodegradación Ambiental
20.
Sci Total Environ ; 773: 145008, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33592479

RESUMEN

AIMS: The effects of aridity on soil and water-use efficient (WUE) crop species are relatively well known. However, the understanding of its impacts on the dynamics of below-ground microorganisms associated with plant roots is less well understood. METHODS: To investigate the influence of increasing aridity on the dynamics of the fungal communities, samples from the root endosphere and rhizosphere associated with the prickly pear cactus trees (Opuntia ficus-indica) growing along the aridity gradient were collected and the internal transcribed spacer (ITS) were sequenced. The diversity and network analyses of fungal taxa were determined along with standard measurements of soil parameters. RESULTS: We found that (i) the fungal community exhibited similar alpha diversity and shared a set of core taxa within the rhizosphere and endosphere, but there was significant beta diversity differences; (ii) the relative abundance of major phyla was higher in the rhizosphere than in the endosphere; (iii) arbuscular endomycorrhizal colonization was highest in the humid climate and decreased under lower-arid, and was negatively correlated with increased concentration of Ca2+ in the soil; (iv) increased aridity correlated with increased connectivity of the soil microbial-root fungal networks in the arid soils, producing a highly cohesive network in the upper-arid area; and (v) distinct fungal hubs sculpt the fungal microbiome network structure in the rhizosphere and endosphere within each bioclimatic zone. CONCLUSIONS: Our findings highlight the importance of gradient analysis-based correlation network as a powerful approach to understand changes in the diversity, the dynamics, and the structure of fungal communities associated with the rhizosphere-endosphere interaction and led to the identification of microbes at each bioclimatic zone that are potentially involved in promoting the survival, protection, and growth of Opuntia trees. The variability of fungal hubs composition depending on plant compartment and bioclimatic zone will give key implications for the application of rhizospheric fungi and endophytes as microbial inoculants in agriculture, as well as in the conservation and restoration of cacti plants in arid and semi-arid lands against the backdrop of climate change. Overall, this study will enhance our understanding of the microbiomes'dynamic of CAM plants in nature.


Asunto(s)
Micobioma , Opuntia , Hongos , Raíces de Plantas , Rizosfera , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA