Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Dev Growth Differ ; 66(2): 119-132, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38193576

RESUMEN

Research on cardiomyopathy models using engineered heart tissue (EHT) created from disease-specific induced pluripotent stem cells (iPSCs) is advancing rapidly. However, the study of restrictive cardiomyopathy (RCM), a rare and intractable cardiomyopathy, remains at the experimental stage because there is currently no established method to replicate the hallmark phenotype of RCM, particularly diastolic dysfunction, in vitro. In this study, we generated iPSCs from a patient with early childhood-onset RCM harboring the TNNI3 R170W mutation (R170W-iPSCs). The properties of R170W-iPSC-derived cardiomyocytes (CMs) and EHTs were evaluated and compared with an isogenic iPSC line in which the mutation was corrected. Our results indicated altered calcium kinetics in R170W-iPSC-CMs, including prolonged tau, and an increased ratio of relaxation force to contractile force in R170W-EHTs. These properties were reversed in the isogenic line, suggesting that our model recapitulates impaired relaxation of RCM, i.e., diastolic dysfunction in clinical practice. Furthermore, overexpression of wild-type TNNI3 in R170W-iPSC-CMs and -EHTs effectively rescued impaired relaxation. These results highlight the potential efficacy of EHT, a modality that can accurately recapitulate diastolic dysfunction in vitro, to elucidate the pathophysiology of RCM, as well as the possible benefits of gene therapies for patients with RCM.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Restrictiva , Células Madre Pluripotentes Inducidas , Niño , Preescolar , Humanos , Cardiomiopatía Restrictiva/genética , Cardiomiopatía Restrictiva/terapia , Mutación , Miocitos Cardíacos/fisiología
2.
Cardiovasc Digit Health J ; 5(1): 19-28, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38390581

RESUMEN

Background: For comprehensive electrocardiogram (ECG) synthesis, a recent promising approach has been based on a heart model with physical and chemical cardiac parameters. However, the problem is that such approach requires a high-cost and limited environment using supercomputers owing to the massive computation. Objective: The purpose of this study is to develop an efficient method for synthesizing 12-lead ECG signals from cardiac parameters. Methods: The proposed method is based on a variational autoencoder (VAE). The encoder and decoder of the VAE are conditioned by the cardiac parameters so that it can model the relationship between the ECG signals and the cardiac parameters. The training data are produced by a comprehensive, finite element method (FEM)-based heart simulator. New ECG signals can then be synthesized by inputting the cardiac parameters into the trained VAE decoder without relying on enormous computational resources. We used 2 metrics to evaluate the quality of ECG signals synthesized by the proposed model. Results: Experimental results showed that the proposed model synthesized adequate ECG signals while preserving empirically important feature points and the overall signal shapes. We also explored the optimal model by varying the number of layers and the size of latent variables in the proposed model that balances the model complexity and the simulation accuracy. Conclusion: The proposed method has the potential to become an alternative to computationally expensive FEM-based heart simulators. It is able to synthesize ECGs from various cardiac parameters within seconds on a personal laptop computer.

3.
Front Cardiovasc Med ; 11: 1372543, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628311

RESUMEN

Background: Auscultatory features of heart sounds (HS) in patients with heart failure (HF) have been studied intensively. Recent developments in digital and electrical devices for auscultation provided easy listening chances to recognize peculiar sounds related to diastolic HS such as S3 or S4. This study aimed to quantitatively assess HS by acoustic measures of intensity (dB) and audio frequency (Hz). Methods: Forty consecutive patients aged between 46 and 87 years (mean age, 74 years) with chronic cardiovascular disease (CVD) were enrolled in the present study after providing written informed consent during their visits to the Kitasato University Outpatient Clinic. HS were recorded at the fourth intercostal space along the left sternal border using a highly sensitive digital device. Two consecutive heartbeats were quantified on sound intensity (dB) and audio frequency (Hz) at the peak power of each spectrogram of S1-S4 using audio editing and recording application software. The participants were classified into three groups, namely, the absence of HF (n = 27), HF (n = 8), and high-risk HF (n = 5), based on the levels of NT-proBNP < 300, ≥300, and ≥900 pg/ml, respectively, and also the levels of ejection fraction (EF), such as preserved EF (n = 22), mildly reduced EF (n = 12), and reduced EF (n = 6). Results: The intensities of four components of HS (S1-S4) decreased linearly (p < 0.02-0.001) with levels of body mass index (BMI) (range, 16.2-33.0 kg/m2). Differences in S1 intensity (ΔS1) and its frequency (ΔfS1) between two consecutive beats were non-audible level and were larger in patients with HF than those in patients without HF (ΔS1, r = 0.356, p = 0.024; ΔfS1, r = 0.356, p = 0.024). The cutoff values of ΔS1 and ΔfS1 for discriminating the presence of high-risk HF were 4.0 dB and 5.0 Hz, respectively. Conclusions: Despite significant attenuations of all four components of HS by BMI, beat-to-beat alterations of both intensity and frequency of S1 were associated with the severity of HF. Acoustic quantification of HS enabled analyses of sounds below the audible level, suggesting that sound analysis might provide an early sign of HF.

4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5481-5487, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892366

RESUMEN

This paper proposes a new generative probabilistic model for phonocardiograms (PCGs) that can simultaneously capture oscillatory factors and state transitions in cardiac cycles. Conventionally, PCGs have been modeled in two main aspects. One is a state space model that represents recurrent and frequently appearing state transitions. Another is a factor model that expresses the PCG as a non-stationary signal consisting of multiple oscillations. To model these perspectives in a unified framework, we combine an oscillation decomposition with a state space model. The proposed model can decompose the PCG into cardiac state dependent oscillations by reflecting the mechanism of cardiac sounds generation in an unsupervised manner. In the experiments, our model achieved better accuracy in the state estimation task compared to the empirical mode decomposition method. In addition, our model detected S2 onsets more accurately than the supervised segmentation method when distributions among PCG signals were different.


Asunto(s)
Ruidos Cardíacos , Algoritmos , Corazón , Fonocardiografía , Procesamiento de Señales Asistido por Computador
5.
Neural Netw ; 97: 62-73, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29096203

RESUMEN

Layered neural networks have greatly improved the performance of various applications including image processing, speech recognition, natural language processing, and bioinformatics. However, it is still difficult to discover or interpret knowledge from the inference provided by a layered neural network, since its internal representation has many nonlinear and complex parameters embedded in hierarchical layers. Therefore, it becomes important to establish a new methodology by which layered neural networks can be understood. In this paper, we propose a new method for extracting a global and simplified structure from a layered neural network. Based on network analysis, the proposed method detects communities or clusters of units with similar connection patterns. We show its effectiveness by applying it to three use cases. (1) Network decomposition: it can decompose a trained neural network into multiple small independent networks thus dividing the problem and reducing the computation time. (2) Training assessment: the appropriateness of a trained result with a given hyperparameter or randomly chosen initial parameters can be evaluated by using a modularity index. And (3) data analysis: in practical data it reveals the community structure in the input, hidden, and output layers, which serves as a clue for discovering knowledge from a trained neural network.


Asunto(s)
Redes Neurales de la Computación , Algoritmos , Análisis por Conglomerados , Biología Computacional , Procesamiento de Imagen Asistido por Computador , Aprendizaje Automático , Dinámicas no Lineales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA