Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-34532989

RESUMEN

Hydrogels are a class of biomaterials widely implemented in medical applications due to their biocompatibility and biodegradability. Despite the many successes of hydrogel-based delivery systems, there remain challenges to hydrogel drug delivery such as a burst release at the time of administration, a limited ability to encapsulate certain types of drugs (i.e., hydrophobic drugs, proteins, antibodies, and nucleic acids), and poor tunability of geometry and shape for controlled drug release. This review discusses two main important advances in hydrogel fabrication for precision drug release: first, the incorporation of nanocarriers to diversify their drug loading capability, and second, the design of hydrogels using 3D printing to precisely control drug dosing and release kinetics via high-resolution structures and geometries. We also outline ongoing challenges and discuss opportunities to further optimize drug release from hydrogels for personalized medicine. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Asunto(s)
Hidrogeles , Impresión Tridimensional , Materiales Biocompatibles , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Hidrogeles/química , Proteínas
2.
Bioeng Transl Med ; 7(2): e10283, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35600639

RESUMEN

Induced neural stem cells (iNSCs) have emerged as a promising therapeutic platform for glioblastoma (GBM). iNSCs have the innate ability to home to tumor foci, making them ideal carriers for antitumor payloads. However, the in vivo persistence of iNSCs limits their therapeutic potential. We hypothesized that by encapsulating iNSCs in the FDA-approved, hemostatic matrix FLOSEAL®, we could increase their persistence and, as a result, therapeutic durability. Encapsulated iNSCs persisted for 95 days, whereas iNSCs injected into the brain parenchyma persisted only 2 weeks in mice. Two orthotopic GBM tumor models were used to test the efficacy of encapsulated iNSCs. In the GBM8 tumor model, mice that received therapeutic iNSCs encapsulated in FLOSEAL® survived 30 to 60 days longer than mice that received nonencapsulated cells. However, the U87 tumor model showed no significant differences in survival between these two groups, likely due to the more solid and dense nature of the tumor. Interestingly, the interaction of iNSCs with FLOSEAL® appears to downregulate some markers of proliferation, anti-apoptosis, migration, and therapy which could also play a role in treatment efficacy and durability. Our results demonstrate that while FLOSEAL® significantly improves iNSC persistence, this alone is insufficient to enhance therapeutic durability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA