RESUMEN
Age-related macular degeneration (AMD) is a major cause of vision loss among the elderly in the Western world. Genetic variants in the complement factor H (CFH) gene are associated with AMD, but the functional consequences of many of these variants are currently unknown. In this study, we aimed to determine the effect of 64 rare and low-frequency variants in the CFH gene on systemic levels of factor H (FH) and complement activation marker C3bBbP using plasma samples of 252 carriers and 159 non-carriers. Individuals carrying a heterozygous nonsense, frameshift or missense variant in CFH presented with significantly decreased FH levels and significantly increased C3bBbP levels in plasma compared to non-carrier controls. FH and C3bBbP plasma levels were relatively stable over time in samples collected during follow-up visits. Decreased FH and increased C3bBbP concentrations were observed in carriers compared to non-carriers of CFH variants among different AMD stages, with the exception of C3bBbP levels in advanced AMD stages, which were equally high in carriers and non-carriers. In AMD families, FH levels were decreased in carriers compared to non-carriers, but C3bBbP levels did not differ. Rare variants in the CFH gene can lead to reduced FH levels or reduced FH function as measured by increased C3bBbP levels. The effects of individual variants in the CFH gene reported in this study will improve the interpretation of rare and low-frequency variants observed in AMD patients in clinical practice.
Asunto(s)
Degeneración Macular , Polimorfismo de Nucleótido Simple , Anciano , Factor H de Complemento/genética , Proteínas del Sistema Complemento/genética , Heterocigoto , Humanos , Degeneración Macular/genética , Mutación MissenseRESUMEN
Genomic studies in age-related macular degeneration (AMD) have identified genetic variants that account for the majority of AMD risk. An important next step is to understand the functional consequences and downstream effects of the identified AMD-associated genetic variants. Instrumental for this next step are 'omics' technologies, which enable high-throughput characterization and quantification of biological molecules, and subsequent integration of genomics with these omics datasets, a field referred to as systems genomics. Single cell sequencing studies of the retina and choroid demonstrated that the majority of candidate AMD genes identified through genomic studies are expressed in non-neuronal cells, such as the retinal pigment epithelium (RPE), glia, myeloid and choroidal cells, highlighting that many different retinal and choroidal cell types contribute to the pathogenesis of AMD. Expression quantitative trait locus (eQTL) studies in retinal tissue have identified putative causal genes by demonstrating a genetic overlap between gene regulation and AMD risk. Linking genetic data to complement measurements in the systemic circulation has aided in understanding the effect of AMD-associated genetic variants in the complement system, and supports that protein QTL (pQTL) studies in plasma or serum samples may aid in understanding the effect of genetic variants and pinpointing causal genes in AMD. A recent epigenomic study fine-mapped AMD causal variants by determing regulatory regions in RPE cells differentiated from induced pluripotent stem cells (iPSC-RPE). Another approach that is being employed to pinpoint causal AMD genes is to produce synthetic DNA assemblons representing risk and protective haplotypes, which are then delivered to cellular or animal model systems. Pinpointing causal genes and understanding disease mechanisms is crucial for the next step towards clinical translation. Clinical trials targeting proteins encoded by the AMD-associated genomic loci C3, CFB, CFI, CFH, and ARMS2/HTRA1 are currently ongoing, and a phase III clinical trial for C3 inhibition recently showed a modest reduction of lesion growth in geographic atrophy. The EYERISK consortium recently developed a genetic test for AMD that allows genotyping of common and rare variants in AMD-associated genes. Polygenic risk scores (PRS) were applied to quantify AMD genetic risk, and may aid in predicting AMD progression. In conclusion, genomic studies represent a turning point in our exploration of AMD. The results of those studies now serve as a driving force for several clinical trials. Expanding to omics and systems genomics will further decipher function and causality from the associations that have been reported, and will enable the development of therapies that will lessen the burden of AMD.
Asunto(s)
Degeneración Macular , Humanos , Degeneración Macular/genética , Degeneración Macular/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Proteínas del Sistema Complemento/metabolismo , Coroides/metabolismo , Proteínas/genética , Genómica , Polimorfismo de Nucleótido Simple , Factor H de Complemento/genética , Factor H de Complemento/metabolismo , Serina Peptidasa A1 que Requiere Temperaturas Altas/genéticaRESUMEN
The complement system plays an important role in our innate immune system. Complement activation results in clearance of pathogens, immune complex, and apoptotic cells. The host is protected from complement-mediated damage by several complement regulators. Factor H (FH) is the most important fluid-phase regulator of the alternative pathway of the complement system. Heterozygous mutations in FH are associated with complement-related diseases such as atypical hemolytic uremic syndrome (aHUS) and age-related macular degeneration. We recently described an agonistic anti-FH mAb that can potentiate the regulatory function of FH. This Ab could serve as a potential new drug for aHUS patients and alternative to C5 blockade by eculizumab. However, it is unclear whether this Ab can potentiate FH mutant variants in addition to wild-type (WT) FH. In this study, the functionality and potential of the agonistic Ab in the context of pathogenic aHUS-related FH mutant proteins was investigated. The binding affinity of recombinant WT FH and the FH variants, W1183L, V1197A, R1210C, and G1194D to C3b was increased upon addition of the potentiating Ab and similarly, the decay-accelerating activity of all mutants is increased. The potentiating anti-FH Ab is able to restore the surface regulatory function of most of the tested FH mutants to WT FH levels on a human HAP-1 cell line and on sheep erythrocytes. In conclusion, our potentiating anti-FH is broadly active and able to enhance both WT FH function as well as most aHUS-associated FH variants tested in this study.
Asunto(s)
Anticuerpos/metabolismo , Síndrome Hemolítico Urémico Atípico/genética , Complemento C3b/metabolismo , Factor H de Complemento/inmunología , Genotipo , Animales , Línea Celular , Activación de Complemento , Factor H de Complemento/agonistas , Factor H de Complemento/genética , Predisposición Genética a la Enfermedad , Humanos , Ratones , Mutación/genética , Polimorfismo Genético , Unión ProteicaRESUMEN
C3 glomerulopathy is characterized by accumulation of complement C3 within glomeruli. Causes include, but are not limited to, abnormalities in factor H, the major negative regulator of the complement alternative pathway. Factor H-deficient (Cfh-/-) mice develop C3 glomerulopathy together with a reduction in plasma C3 levels. Using this model, we assessed the efficacy of two fusion proteins containing the factor H alternative pathway regulatory domains (FH1-5) linked to either a non-targeting mouse immunoglobulin (IgG-FH1-5) or to an anti-mouse properdin antibody (Anti-P-FH1-5). Both proteins increased plasma C3 and reduced glomerular C3 deposition to an equivalent extent, suggesting that properdin-targeting was not required for FH1-5 to alter C3 activation in either plasma or glomeruli. Following IgG-FH1-5 administration, plasma C3 levels temporally correlated with changes in factor B levels whereas plasma C5 levels correlated with changes in plasma properdin levels. Notably, the increases in plasma C5 and properdin levels persisted for longer than the increases in C3 and factor B. In Cfh-/- mice IgG-FH1-5 reduced kidney injury during accelerated serum nephrotoxic nephritis. Thus, our data demonstrate that IgG-FH1-5 restored circulating alternative pathway activity and reduced glomerular C3 deposition in Cfh-/- mice and that plasma properdin levels are a sensitive marker of C5 convertase activity in factor H deficiency. The immunoglobulin conjugated FH1-5 protein, through its comparatively long plasma half-life, may be a potential therapy for C3 glomerulopathy.
Asunto(s)
Complemento C3 , Properdina , Animales , Complemento C3/genética , Convertasas de Complemento C3-C5 , Complemento C5 , Factor H de Complemento/genética , Vía Alternativa del Complemento , Inmunoglobulina G , Ratones , Properdina/genéticaRESUMEN
Purpose: Factor H (FH, encoded by CFH) prevents activation of the complement system's alternative pathway (AP) on host tissues. FH impedes C3 convertase (C3bBb) formation, accelerates C3bBb decay, and is a cofactor for factor I (FI)-catalyzed C3b cleavage. Numerous CFH variants are associated with age-related macular degeneration (AMD), but their functional consequences frequently remain undetermined. Here, we conduct functional comparisons between a control version of FH (not AMD linked) and 21 AMD-linked FH variants. Methods: Recombinantly produced, untagged, full-length FH versions were assayed for binding to C3b and decay acceleration of C3bBb using surface-plasmon resonance, FI-cofactor activity using a fluorescent probe of C3b integrity, suppression of C5b-9 assembly on an AP-activating surface, and inhibition of human AP-mediated lysis of sheep erythrocytes. Results: All versions were successfully purified despite below-average yields for Arg2Thr, Arg53Cys, Arg175Pro, Arg175Gln, Ile221Val, Tyr402His, Pro503Ala, Arg567Gly, Gly1194Asp, and Arg1210Cys. Compared to control FH, Arg2Thr, Leu3Val, Ser58Ala, Asp90Gly, Asp130Asn, Gln400Lys, Tyr402His, Gly650Val, Ser890Ile, and Thr965Met showed minimal functional differences. Arg1210C, Arg53His, Arg175Gln, Gly1194Asp, Pro503Ala, Arg53Cys, Arg576Gly, and Arg175Pro (in order of decreasing efficacy) underperformed, while Ile221Val, Arg303Gln, and Arg303Trp were "marginal." We newly identified variants toward the center of the molecule, Pro503Ala and Arg567Gly, as potentially pathogenic. Conclusions: Our approach could be extended to other variants of uncertain significance and to assays for noncanonical FH activities, aiming to facilitate selection of cohorts most likely to benefit from therapeutic FH. This is timely as recombinant therapeutic FH is in development for intravitreal treatment of AMD in patients with reduced FH functionality.
Asunto(s)
Factor H de Complemento , Degeneración Macular , Animales , Humanos , Aceleración , Factor H de Complemento/genética , Complejo de Ataque a Membrana del Sistema Complemento , Proteínas del Sistema Complemento , Degeneración Macular/genética , OvinosRESUMEN
PURPOSE: GEM103 is a recombinantly produced full-length version of the human complement factor H (CFH) under clinical investigation for treatment of age-related macular degeneration (AMD) in individuals carrying an AMD risk-associated genetic variant of CFH. This study aimed to investigate the complement pathway-related functions of GEM103 in comparison with those of native human CFH. METHODS: Key biological activities of GEM103 and human serum-derived CFH (sdCFH) were compared using four independent functional assays. Assays of C3b binding and C3 convertase decay-accelerating activity (DAA) were performed by surface plasmon resonance (SPR). Cofactor activity (CA) was measured using 8-anilinonaphthalene-1-sulfonic acid as a fluorescent probe of C3b integrity. The abilities of GEM103 and sdCFH to protect sheep erythrocytes from hemolysis by CFH-depleted normal human serum were assessed colorimetrically. RESULTS: In multiple SPR-based assays of C3b binding and DAA, the performance of GEM103 was consistently comparable to that of sdCFH across a range of matching concentrations. The EC50 ± SD in the fluorescence-based fluid-phase CA assay was 0.21 ± 0.06 µM for GEM103 compared to 0.20 ± 0.09 µM for sdCFH. In hemolysis assays, the EC50 value of 0.33 ± 0.16 µM for GEM103 versus 0.46 ± 0.06 µM for sdCFH were not significantly different (p = 0.81). CONCLUSIONS: GEM103, a recombinant CFH developed by Gemini Therapeutics, shows activity profiles comparable to sdCFH in all complement-related assays employed in this study, suggesting that GEM103 is equivalent to the native glycoprotein in terms of its in vitro functional activity. These results support further study of GEM103 as a potential therapy for AMD.
Asunto(s)
Factor H de Complemento , Degeneración Macular , Animales , Factor H de Complemento/genética , Factor H de Complemento/metabolismo , Hemólisis , Humanos , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/genética , Degeneración Macular/metabolismo , Polimorfismo de Nucleótido Simple , OvinosRESUMEN
Age-related macular degeneration (AMD) is a common eye disease among the elderly in the Western world. AMD is a multifactorial disease, with a strong association with genetic variation in the complement system. One of the AMD-associated variants is the c.355G>A (p.Gly119Arg) variant in complement factor I (CFI), a central regulator of complement activation. Here, we report the generation of an iPSC line and its isogenic wildtype control derived from peripheral blood mononuclear cells of a male AMD-affected individual carrying the heterozygous variant c.355G>A (p.Gly119Arg). The line can be utilized to study the effects of this variant in disease-specific cell types.
Asunto(s)
Células Madre Pluripotentes Inducidas , Degeneración Macular , Anciano , Humanos , Masculino , Factor I de Complemento/genética , Células Madre Pluripotentes Inducidas/metabolismo , Leucocitos Mononucleares/metabolismo , Degeneración Macular/genética , Degeneración Macular/metabolismo , Polimorfismo de Nucleótido SimpleRESUMEN
Age-related macular degeneration (AMD) is a common eye disease among the elderly in the Western world. AMD is a multifactorial disease, with a strong association with genetic variation in the complement system. One of the AMD-associated variants is the c.355G>A (p.Gly119Arg) variant in complement factor I (CFI), a central regulator of complement activation. Here, we report the generation of an iPSC line and its isogenic wildtype control derived from peripheral blood mononuclear cells of a female AMD-affected individual carrying the heterozygous variant c.355G>A (p.Gly119Arg). This line can be utilized to study the effects of this variant in disease-specific cell types.
Asunto(s)
Células Madre Pluripotentes Inducidas , Degeneración Macular , Anciano , Femenino , Humanos , Factor I de Complemento/genética , Células Madre Pluripotentes Inducidas/metabolismo , Leucocitos Mononucleares/metabolismo , Degeneración Macular/genética , Degeneración Macular/metabolismo , Polimorfismo de Nucleótido SimpleRESUMEN
Complement factor I (FI) is a central inhibitor of the complement system, and impaired FI function increases complement activation, contributing to diseases such as age-related macular degeneration (AMD) and atypical hemolytic uremic syndrome (aHUS). Genetic variation in complement factor I (CFI) has been identified in both AMD and aHUS, with more than half of these variants leading to reduced FI secretion levels. For many of the variants with normal FI secretion, however, functional implications are not yet known. Here we studied 11 rare missense variants, with FI secretion levels comparable to wildtype, but a predicted damaging effects based on the Combined Annotation Dependent Depletion (CADD) score. Three variants (p.Pro50Ala, p.Arg339Gln, and p.Ser570Thr) were analyzed in plasma and serum samples of carriers affected by AMD. All 11 variants (nine for the first time in this study) were recombinantly expressed and the ability to degrade C3b was studied with the C3b degradation assay. The amount of degradation was determined by measuring the degradation product iC3b with ELISA. Eight of 11 (73%) mutant proteins (p.Pro50Ala, p.Arg339Gln, p.Ile340Thr, p.Gly342Glu, p.Gly349Arg, p.Arg474Gln, p.Gly487Cys, and p.Gly512Ser) showed significantly impaired C3b degradation, and were therefore classified as likely pathogenic. Our data indicate that genetic variants in CFI with a CADD score >20 are likely to affect FI function, and that monitoring iC3b in a degradation assay is a useful tool to establish the pathogenicity of CFI variants in functional studies.
Asunto(s)
Síndrome Hemolítico Urémico Atípico , Factor I de Complemento , Degeneración Macular , Mutación Missense , Sustitución de Aminoácidos , Síndrome Hemolítico Urémico Atípico/sangre , Síndrome Hemolítico Urémico Atípico/genética , Síndrome Hemolítico Urémico Atípico/inmunología , Complemento C3b/inmunología , Complemento C3b/metabolismo , Factor I de Complemento/genética , Factor I de Complemento/inmunología , Factor I de Complemento/metabolismo , Femenino , Humanos , Degeneración Macular/sangre , Degeneración Macular/genética , Degeneración Macular/inmunología , MasculinoRESUMEN
Age-related macular degeneration (AMD) is the main cause of vision loss among the elderly in the Western world. While AMD is a multifactorial disease, the complement system was identified as one of the main pathways contributing to disease risk. The strong link between the complement system and AMD was demonstrated by genetic associations, and by elevated complement activation in local eye tissue and in the systemic circulation of AMD patients. Several complement inhibitors have been and are being explored in clinical trials, but thus far with limited success, leaving the majority of AMD patients without treatment options to date. This indicates that there is still a gap of knowledge regarding the functional implications of the complement system in AMD pathogenesis and how to bring these towards clinical translation. Many different experimental set-ups and disease models have been used to study complement activation in vivo and in vitro, and recently emerging patient-derived induced pluripotent stem cells and genome-editing techniques open new opportunities to study AMD disease mechanisms and test new therapeutic strategies in the future. In this review we provide an extensive overview of methods employed to understand the molecular processes of complement activation in AMD pathogenesis. We discuss the findings, advantages and challenges of each approach and conclude with an outlook on how recent, exciting developments can fill in current knowledge gaps and can aid in the development of effective complement-targeting therapeutic strategies in AMD.
Asunto(s)
Degeneración Macular , Anciano , Activación de Complemento , Proteínas del Sistema Complemento/genética , Variación Genética , Humanos , Degeneración Macular/genéticaRESUMEN
Complement activation in human diseases is characterized by the local covalent deposition of the long-lived C3 fragments iC3b/C3dg/C3d. Previously, TT30, a complement alternative pathway (AP)-selective inhibitor, was designed as a fusion protein linking the first four short consensus repeats (SCRs) of human complement receptor type 2 (CR2) with the first five SCRs of human factor H (fH). TT30 acts by utilizing CR2 SCR1-4 to bind the initially formed iC3b/C3dg/C3d fragments and delivering surface-targeted inhibition of AP C3 and C5 convertases through fH SCR 1-5. In order to combine classical (CP) and lectin (LP) pathway inhibitory abilities employing CR2-mediated targeting, TT32 was developed. TT32 is a CR2-CR1 fusion protein using the first ten SCRs of CR1, chosen because they contain both C3 and C5 convertase inhibitory activity through utilization of decay-acceleration and cofactor activity for both AP and CP. In Wieslab assays, TT32 showed potent inhibition of the CP and AP with IC50 of 11 and 46 nM, respectively. The TT32 inhibitory activity is partially blocked with a molar excess of a competing anti-CR2 mAb, thus demonstrating the importance of the CR2 targeting. TT32 was studied in the type II (CII) collagen-induced arthritis (CIA), an active immunization model, and the CII antibody-induced arthritis (CAIA) passive transfer model. In CIA, injection of 2.0 mg TT32 at day 21 and 28 post disease induction, but not untargeted CR1 alone, resulted in a 51.5% decrease in clinical disease activity (CDA). In CAIA, treatment with TT32 resulted in a 47.4% decrease in CDA. Therefore, a complement inhibitor that targets both the AP and CP/LP C3/C5 convertases was shown to limit complement-mediated tissue damage and inflammation in disease models in which all three complement activation pathways are implicated.
Asunto(s)
Artritis Experimental/terapia , C3 Convertasa de la Vía Alternativa del Complemento/inmunología , Inmunización Pasiva , Receptores de Complemento 3d/inmunología , Receptores de Complemento/inmunología , Proteínas Recombinantes de Fusión/inmunología , Animales , Artritis Experimental/genética , Artritis Experimental/inmunología , Artritis Experimental/patología , C3 Convertasa de la Vía Alternativa del Complemento/genética , Humanos , Masculino , Ratones , Conejos , Receptores de Complemento/genética , Proteínas Recombinantes de Fusión/genética , OvinosRESUMEN
A library of benzofurans was prepared by solid-phase synthesis methods, and several analogues were identified as potent ligands for the estrogen receptors ER-alpha and ER-beta, with some compounds having selectivity for ER-alpha. Analogues designed to more closely mimic Raloxifene were less effective. Certain benzofurans were effective in a bone pit assay, but were characterized as agonists in a MCF-7 breast tumor cell proliferation assay.