Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.273
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Circulation ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39206545

RESUMEN

BACKGROUND: The myocardium adapts to ischemia/reperfusion (I/R) by changes in gene expression, determining the cardiac response to reperfusion. mRNA translation is a key component of gene expression. It is largely unknown how regulation of mRNA translation contributes to cardiac gene expression and inflammation in response to reperfusion and whether it can be targeted to mitigate I/R injury. METHODS: To examine translation and its impact on gene expression in response to I/R, we measured protein synthesis after reperfusion in vitro and in vivo. Underlying mechanisms of translational control were examined by pharmacological and genetic targeting of translation initiation in mice. Cell type-specific ribosome profiling was performed in mice that had been subjected to I/R to determine the impact of mRNA translation on the regulation of gene expression in cardiomyocytes. Translational regulation of inflammation was studied by quantification of immune cell infiltration, inflammatory gene expression, and cardiac function after short-term inhibition of translation initiation. RESULTS: Reperfusion induced a rapid recovery of translational activity that exceeds baseline levels in the infarct and border zone and is mediated by translation initiation through the mTORC1 (mechanistic target of rapamycin complex 1)-4EBP1 (eIF4E-binding protein 1)-eIF (eukaryotic initiation factor) 4F axis. Cardiomyocyte-specific ribosome profiling identified that I/R increased translation of mRNA networks associated with cardiac inflammation and cell infiltration. Short-term inhibition of the mTORC1-4EBP1-eIF4F axis decreased the expression of proinflammatory cytokines such as Ccl2 (C-C motif chemokine ligand 2) of border zone cardiomyocytes, thereby attenuating Ly6Chi monocyte infiltration and myocardial inflammation. In addition, we identified a systemic immunosuppressive effect of eIF4F translation inhibitors on circulating monocytes, directly inhibiting monocyte infiltration. Short-term pharmacological inhibition of eIF4F complex formation by 4EGI-1 or rapamycin attenuated translation, reduced infarct size, and improved cardiac function after myocardial infarction. CONCLUSIONS: Global protein synthesis is inhibited during ischemia and shortly after reperfusion, followed by a recovery of protein synthesis that exceeds baseline levels in the border and infarct zones. Activation of mRNA translation after reperfusion is driven by mTORC1/eIF4F-mediated regulation of initiation and mediates an mRNA network that controls inflammation and monocyte infiltration to the myocardium. Transient inhibition of the mTORC1-/eIF4F axis inhibits translation and attenuates Ly6Chi monocyte infiltration by inhibiting a proinflammatory response at the site of injury and of circulating monocytes.

2.
Mol Ther ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39066479

RESUMEN

Cardiac signaling pathways functionally important in the heart's response to exercise often protect the heart against pathological stress, potentially providing novel therapeutic targets. However, it is important to determine which of these pathways can be feasibly targeted in vivo. Transgenic overexpression of exercise-induced CITED4 has been shown to protect against adverse remodeling after ischemia/reperfusion injury (IRI). Here we investigated whether somatic gene transfer of CITED4 in a clinically relevant time frame could promote recovery after IRI. Cardiac CITED4 gene delivery via intravenous AAV9 injections in wild type mice led to an approximately 3-fold increase in cardiac CITED4 expression. After 4 weeks, CITED4-treated animals developed physiological cardiac hypertrophy without adverse remodeling. In IRI, delivery of AAV9-CITED4 after reperfusion resulted in a 6-fold increase in CITED4 expression 1 week after surgery, as well as decreased apoptosis, fibrosis, and inflammatory markers, culminating in a smaller scar and improved cardiac function 8 weeks after IRI, compared with control mice receiving AAV9-GFP. Somatic gene transfer of CITED4 induced a phenotype suggestive of physiological cardiac growth and mitigated adverse remodeling after ischemic injury. These studies support the feasibility of CITED4 gene therapy delivered in a clinically relevant time frame to mitigate adverse ventricular remodeling after ischemic injury.

3.
J Mol Cell Cardiol ; 189: 12-24, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401179

RESUMEN

Cardiomyocytes activate the unfolded protein response (UPR) transcription factor ATF6 during pressure overload-induced hypertrophic growth. The UPR is thought to increase ER protein folding capacity and maintain proteostasis. ATF6 deficiency during pressure overload leads to heart failure, suggesting that ATF6 protects against myocardial dysfunction by preventing protein misfolding. However, conclusive evidence that ATF6 prevents toxic protein misfolding during cardiac hypertrophy is still pending. Here, we found that activation of the UPR, including ATF6, is a common response to pathological cardiac hypertrophy in mice. ATF6 KO mice failed to induce sufficient levels of UPR target genes in response to chronic isoproterenol infusion or transverse aortic constriction (TAC), resulting in impaired cardiac growth. To investigate the effects of ATF6 on protein folding, the accumulation of poly-ubiquitinated proteins as well as soluble amyloid oligomers were directly quantified in hypertrophied hearts of WT and ATF6 KO mice. Whereas only low levels of protein misfolding was observed in WT hearts after TAC, ATF6 KO mice accumulated increased quantities of misfolded protein, which was associated with impaired myocardial function. Collectively, the data suggest that ATF6 plays a critical adaptive role during cardiac hypertrophy by protecting against protein misfolding.


Asunto(s)
Estenosis de la Válvula Aórtica , Cardiomegalia , Animales , Ratones , Cardiomegalia/patología , Miocitos Cardíacos/metabolismo , Miocardio/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Estenosis de la Válvula Aórtica/metabolismo , Ratones Noqueados
4.
Circulation ; 148(6): 473-486, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37317858

RESUMEN

BACKGROUND: Immune checkpoint inhibitors (ICIs) are approved for multiple cancers but can result in ICI-associated myocarditis, an infrequent but life-threatening condition. Elevations in cardiac biomarkers, specifically troponin-I (cTnI), troponin-T (cTnT), and creatine kinase (CK), are used for diagnosis. However, the association between temporal elevations of these biomarkers with disease trajectory and outcomes has not been established. METHODS: We analyzed the diagnostic accuracy and prognostic performances of cTnI, cTnT, and CK in patients with ICI myocarditis (n=60) through 1-year follow-up in 2 cardio-oncology units (APHP Sorbonne, Paris, France and Heidelberg, Germany). A total of 1751 (1 cTnT assay type), 920 (4 cTnI assay types), and 1191 CK sampling time points were available. Major adverse cardiomyotoxic events (MACE) were defined as heart failure, ventricular arrhythmia, atrioventricular or sinus block requiring pacemaker, respiratory muscle failure requiring mechanical ventilation, and sudden cardiac death. Diagnostic performance of cTnI and cTnT was also assessed in an international ICI myocarditis registry. RESULTS: Within 72 hours of admission, cTnT, cTnI, and CK were increased compared with upper reference limits (URLs) in 56 of 57 (98%), 37 of 42 ([88%] P=0.03 versus cTnT), and 43 of 57 ([75%] P<0.001 versus cTnT), respectively. This increased rate of positivity for cTnT (93%) versus cTnI ([64%] P<0.001) on admission was confirmed in 87 independent cases from an international registry. In the Franco-German cohort, 24 of 60 (40%) patients developed ≥1 MACE (total, 52; median time to first MACE, 5 [interquartile range, 2-16] days). The highest value of cTnT:URL within the first 72 hours of admission performed best in terms of association with MACE within 90 days (area under the curve, 0.84) than CK:URL (area under the curve, 0.70). A cTnT:URL ≥32 within 72 hours of admission was the best cut-off associated with MACE within 90 days (hazard ratio, 11.1 [95% CI, 3.2-38.0]; P<0.001), after adjustment for age and sex. cTnT was increased in all patients within 72 hours of the first MACE (23 of 23 [100%]), whereas cTnI and CK values were less than the URL in 2 of 19 (11%) and 6 of 22 (27%) of patients (P<0.001), respectively. CONCLUSIONS: cTnT is associated with MACE and is sensitive for diagnosis and surveillance in patients with ICI myocarditis. A cTnT:URL ratio <32 within 72 hours of diagnosis is associated with a subgroup at low risk for MACE. Potential differences in diagnostic and prognostic performances between cTnT and cTnI as a function of the assays used deserve further evaluation in ICI myocarditis.


Asunto(s)
Miocarditis , Humanos , Miocarditis/inducido químicamente , Miocarditis/diagnóstico , Inhibidores de Puntos de Control Inmunológico , Biomarcadores , Creatina Quinasa , Pronóstico , Troponina T
5.
Pflugers Arch ; 476(2): 229-242, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38036776

RESUMEN

Loss-of-function variants of SCN5A, encoding the sodium channel alpha subunit Nav1.5 are associated with high phenotypic variability and multiple cardiac presentations, while underlying mechanisms are incompletely understood. Here we investigated a family with individuals affected by Brugada Syndrome (BrS) of different severity and aimed to unravel the underlying genetic and electrophysiological basis.Next-generation sequencing was used to identify the genetic variants carried by family members. The index patient, who was severely affected by arrhythmogenic BrS, carried previously uncharacterized variants of Nav1.5 (SCN5A-G1661R) and glycerol-3-phosphate dehydrogenase-1-like protein (GPD1L-A306del) in a double heterozygous conformation. Family members exclusively carrying SCN5A-G1661R showed asymptomatic Brugada ECG patterns, while another patient solely carrying GPD1L-A306del lacked any clinical phenotype.To assess functional mechanisms, Nav1.5 channels were transiently expressed in HEK-293 cells in the presence and absence of GPD1L. Whole-cell patch-clamp recordings revealed loss of sodium currents after homozygous expression of SCN5A-G1661R, and reduction of current amplitude to ~ 50% in cells transfected with equal amounts of wildtype and mutant Nav1.5. Co-expression of wildtype Nav1.5 and GPD1L showed a trend towards increased sodium current amplitudes and a hyperpolarizing shift in steady-state activation and -inactivation compared to sole SCN5A expression. Application of the GPD1L-A306del variant shifted steady-state activation to more hyperpolarized and inactivation to more depolarized potentials.In conclusion, SCN5A-G1661R produces dysfunctional channels and associates with BrS. SCN5A mediated currents are modulated by co-expression of GDP1L and this interaction is altered by mutations in both proteins. Thus, additive genetic burden may aggravate disease severity, explaining higher arrhythmogenicity in double mutation carriers.


Asunto(s)
Síndrome de Brugada , Humanos , Síndrome de Brugada/genética , Síndrome de Brugada/metabolismo , Sodio/metabolismo , Células HEK293 , Mutación , Fenotipo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo
6.
Am J Physiol Heart Circ Physiol ; 327(1): H000, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38819384

RESUMEN

The EF-hand calcium (Ca2+) sensor protein S100A1 combines inotropic with antiarrhythmic potency in cardiomyocytes (CMs). Oxidative posttranslational modification (ox-PTM) of S100A1's conserved, single-cysteine residue (C85) via reactive nitrogen species (i.e., S-nitrosylation or S-glutathionylation) has been proposed to modulate conformational flexibility of intrinsically disordered sequence fragments and to increase the molecule's affinity toward Ca2+. Considering the unknown biological functional consequence, we aimed to determine the impact of the C85 moiety of S100A1 as a potential redox switch. We first uncovered that S100A1 is endogenously glutathionylated in the adult heart in vivo. To prevent glutathionylation of S100A1, we generated S100A1 variants that were unresponsive to ox-PTMs. Overexpression of wild-type (WT) and C85-deficient S100A1 protein variants in isolated CM demonstrated equal inotropic potency, as shown by equally augmented Ca2+ transient amplitudes under basal conditions and ß-adrenergic receptor (ßAR) stimulation. However, in contrast, ox-PTM defective S100A1 variants failed to protect against arrhythmogenic diastolic sarcoplasmic reticulum (SR) Ca2+ waves and ryanodine receptor 2 (RyR2) hypernitrosylation during ßAR stimulation. Despite diastolic performance failure, C85-deficient S100A1 protein variants exerted similar Ca2+-dependent interaction with the RyR2 than WT-S100A1. Dissecting S100A1's molecular structure-function relationship, our data indicate for the first time that the conserved C85 residue potentially acts as a redox switch that is indispensable for S100A1's antiarrhythmic but not its inotropic potency in CMs. We, therefore, propose a model where C85's ox-PTM determines S100A1's ability to beneficially control diastolic but not systolic RyR2 activity.NEW & NOTEWORTHY S100A1 is an emerging candidate for future gene-therapy treatment of human chronic heart failure. We aimed to study the significance of the conserved single-cysteine 85 (C85) residue in cardiomyocytes. We show that S100A1 is endogenously glutathionylated in the heart and demonstrate that this is dispensable to increase systolic Ca2+ transients, but indispensable for mediating S100A1's protection against sarcoplasmic reticulum (SR) Ca2+ waves, which was dependent on the ryanodine receptor 2 (RyR2) nitrosylation status.


Asunto(s)
Señalización del Calcio , Cisteína , Miocitos Cardíacos , Oxidación-Reducción , Canal Liberador de Calcio Receptor de Rianodina , Proteínas S100 , Miocitos Cardíacos/metabolismo , Animales , Cisteína/metabolismo , Proteínas S100/metabolismo , Proteínas S100/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Diástole , Masculino , Procesamiento Proteico-Postraduccional , Ratones Endogámicos C57BL , Retículo Sarcoplasmático/metabolismo , Glutatión/metabolismo , Ratones , Contracción Miocárdica
7.
Clin Chem Lab Med ; 62(6): 1167-1176, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38341860

RESUMEN

OBJECTIVES: Biomarker concentrations and their changes during acute coronary syndrome (ACS) provide clinically useful information on pathophysiological processes, e.g. myocardial necrosis, hemodynamic stress and inflammation. However, current evidence on temporal biomarker patterns early during ACS is limited, and studies investigating multiple biomarkers are lacking. METHODS: We measured concentrations of high-sensitivity cardiac troponin T (hs-cTnT) and I (hs-cTnI), NT-terminal pro-B-type natriuretic peptide, C-reactive protein, and growth-differentiation factor-15 (GDF-15) in plasma samples obtained at randomization in ACS patients from the PLATelet inhibition and patient Outcomes (PLATO) trial. Linear regressions with interaction analyses were used to investigate the associations of biomarker concentrations with the time from symptom onset and to model temporal biomarker concentration patterns. RESULTS: The study population consisted of 16,944 patients (median age 62 years; 71.3 % males) with 6,853 (40.3 %) having ST-elevation myocardial infarction (STEMI) and 10,141 (59.7 %) having non-ST-elevation ACS (NSTE-ACS). Concentrations of all biomarkers were associated with time from symptom onset (pinteraction<0.001), apart for GDF-15 (pinteraction=0.092). Concentration increases were more pronounced in STEMI compared to NSTE-ACS. Temporal biomarker patterns for hs-cTnT and hs-cTnI were different depending on sex whereas biomarker patterns for the other biomarkers were similar in cohorts defined by age and sex. CONCLUSIONS: Temporal concentration patterns differ for various biomarkers early during ACS, reflecting the variability in the activation and duration of different pathophysiological processes, and the amount of injured myocardium. Our data emphasize that the time elapsed from symptom onset should be considered for the interpretation of biomarker results in ACS.


Asunto(s)
Síndrome Coronario Agudo , Biomarcadores , Factor 15 de Diferenciación de Crecimiento , Troponina T , Humanos , Síndrome Coronario Agudo/sangre , Síndrome Coronario Agudo/diagnóstico , Biomarcadores/sangre , Masculino , Femenino , Persona de Mediana Edad , Anciano , Troponina T/sangre , Factor 15 de Diferenciación de Crecimiento/sangre , Troponina I/sangre , Proteína C-Reactiva/análisis , Proteína C-Reactiva/metabolismo , Péptido Natriurético Encefálico/sangre , Factores de Tiempo , Fragmentos de Péptidos/sangre
8.
Echocardiography ; 41(2): e15786, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38400544

RESUMEN

BACKGROUND: High-altitude pulmonary hypertension (HAPH) has a prevalence of approximately 10%. Changes in cardiac morphology and function at high altitude, compared to a population that does not develop HAPH are scarce. METHODS: Four hundred twenty-one subjects were screened in a hypoxic chamber inspiring a FiO2  = 12% for 2 h. In 33 subjects an exaggerated increase in systolic pulmonary artery pressure (sPAP) could be confirmed in two independent measurements. Twenty nine of these, and further 24 matched subjects without sPAP increase were examined at 4559 m by Doppler echocardiography including global longitudinal strain (GLS). RESULTS: SPAP increase was higher in HAPH subjects (∆ = 10.2 vs. ∆ = 32.0 mm Hg, p < .001). LV eccentricity index (∆ = .15 vs. ∆ = .31, p = .009) increased more in HAPH. D-shaped LV (0 [0%] vs. 30 [93.8%], p = .00001) could be observed only in the HAPH group, and only in those with a sPAP ≥50 mm Hg. LV-EF (∆ = 4.5 vs. ∆ = 6.7%, p = .24) increased in both groups. LV-GLS (∆ = 1.2 vs. ∆ = 1.1 -%, p = .60) increased slightly. RV end-diastolic (∆ = 2.20 vs. ∆ = 2.7 cm2 , p = .36) and end-systolic area (∆ = 2.1 vs. ∆ = 2.7 cm2 , p = .39), as well as RA end-systolic area index (∆ = -.9 vs. ∆ = .3 cm2 /m2 , p = .01) increased, RV-FAC (∆ = -2.9 vs. ∆ = -4.7%, p = .43) decreased, this was more pronounced in HAPH, RV-GLS (∆ = 1.6 vs. ∆ = -.7 -%, p = .17) showed marginal changes. CONCLUSIONS: LV and LA dimensions decrease and left ventricular function increases at high-altitude in subjects with and without HAPH. RV and RA dimensions increase, and RV longitudinal strain increases or remains unchanged in subjects with HAPH. Changes are negligible in those without HAPH.


Asunto(s)
Mal de Altura , Hipertensión Pulmonar , Humanos , Hipertensión Pulmonar/diagnóstico por imagen , Hipertensión Pulmonar/etiología , Altitud , Mal de Altura/complicaciones , Función Ventricular Izquierda
9.
Am J Physiol Heart Circ Physiol ; 325(2): H311-H320, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37294892

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of protein synthesis that senses and responds to a variety of stimuli to coordinate cellular metabolism with environmental conditions. To ensure that protein synthesis is inhibited during unfavorable conditions, translation is directly coupled to the sensing of cellular protein homeostasis. Thus, translation is attenuated during endoplasmic reticulum (ER) stress by direct inhibition of the mTORC1 pathway. However, residual mTORC1 activity is maintained during prolonged ER stress, which is thought to be involved in translational reprogramming and adaption to ER stress. By analyzing the dynamics of mTORC1 regulation during ER stress, we unexpectedly found that mTORC1 is transiently activated in cardiomyocytes within minutes at the onset of ER stress before being inhibited during chronic ER stress. This dynamic regulation of mTORC1 appears to be mediated, at least in part, by ATF6, as its activation was sufficient to induce the biphasic control of mTORC1. We further showed that protein synthesis remains dependent on mTORC1 throughout the ER stress response and that mTORC1 activity is essential for posttranscriptional induction of several unfolded protein response genes. Pharmacological inhibition of mTORC1 increased cell death during ER stress, indicating that the mTORC1 pathway serves adaptive functions during ER stress in cardiomyocytes potentially by controlling the expression of protective unfolded protein response genes.NEW & NOTEWORTHY Cells coordinate translation rates with protein quality control to ensure that protein synthesis is initiated primarily when proper protein folding can be achieved. Long-term activity of the unfolded protein response is therefore associated with an inhibition of mTORC1, a central regulator of protein synthesis. Here, we found that mTORC1 is transiently activated early in response to ER stress before it is inhibited. Importantly, partial mTORC1 activity remained essential for the upregulation of adaptive unfolded protein response genes and cell survival in response to ER stress. Our data reveal a complex regulation of mTORC1 during ER stress and its involvement in the adaptive unfolded protein response.


Asunto(s)
Miocitos Cardíacos , Transducción de Señal , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Miocitos Cardíacos/metabolismo , Estrés del Retículo Endoplásmico , Respuesta de Proteína Desplegada , Muerte Celular , Proteínas/metabolismo
10.
Basic Res Cardiol ; 118(1): 25, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37378715

RESUMEN

RNA-protein interactions are central to cardiac function, but how activity of individual RNA-binding protein is regulated through signaling cascades in cardiomyocytes during heart failure development is largely unknown. The mechanistic target of rapamycin kinase is a central signaling hub that controls mRNA translation in cardiomyocytes; however, a direct link between mTOR signaling and RNA-binding proteins in the heart has not been established. Integrative transcriptome and translatome analysis revealed mTOR dependent translational upregulation of the RNA binding protein Ybx1 during early pathological remodeling independent of mRNA levels. Ybx1 is necessary for pathological cardiomyocyte growth by regulating protein synthesis. To identify the molecular mechanisms how Ybx1 regulates cellular growth and protein synthesis, we identified mRNAs bound to Ybx1. We discovered that eucaryotic elongation factor 2 (Eef2) mRNA is bound to Ybx1, and its translation is upregulated during cardiac hypertrophy dependent on Ybx1 expression. Eef2 itself is sufficient to drive pathological growth by increasing global protein translation. Finally, Ybx1 depletion in vivo preserved heart function during pathological cardiac hypertrophy. Thus, activation of mTORC1 links pathological signaling cascades to altered gene expression regulation by activation of Ybx1 which in turn promotes translation through increased expression of Eef2.


Asunto(s)
Insuficiencia Cardíaca , Serina-Treonina Quinasas TOR , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Ratones , Ratas
11.
EMBO Rep ; 22(12): e52170, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34605609

RESUMEN

The mechanistic target of rapamycin (mTOR) promotes pathological remodeling in the heart by activating ribosomal biogenesis and mRNA translation. Inhibition of mTOR in cardiomyocytes is protective; however, a detailed role of mTOR in translational regulation of specific mRNA networks in the diseased heart is unknown. We performed cardiomyocyte genome-wide sequencing to define mTOR-dependent gene expression control at the level of mRNA translation. We identify the muscle-specific protein Cullin-associated NEDD8-dissociated protein 2 (Cand2) as a translationally upregulated gene, dependent on the activity of mTOR. Deletion of Cand2 protects the myocardium against pathological remodeling. Mechanistically, we show that Cand2 links mTOR signaling to pathological cell growth by increasing Grk5 protein expression. Our data suggest that cell-type-specific targeting of mTOR might have therapeutic value against pathological cardiac remodeling.


Asunto(s)
Miocitos Cardíacos , Remodelación Ventricular , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Musculares , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Transducción de Señal , Factores de Transcripción , Regulación hacia Arriba , Remodelación Ventricular/genética
12.
Eur Heart J ; 43(8): 716-799, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35016208

RESUMEN

AIMS: This report from the European Society of Cardiology (ESC) Atlas Project updates and expands upon the widely cited 2019 report in presenting cardiovascular disease (CVD) statistics for the 57 ESC member countries. METHODS AND RESULTS: Statistics pertaining to 2019, or the latest available year, are presented. Data sources include the World Health Organization, the Institute for Health Metrics and Evaluation, the World Bank, and novel ESC sponsored data on human and capital infrastructure and cardiovascular healthcare delivery. New material in this report includes sociodemographic and environmental determinants of CVD, rheumatic heart disease, out-of-hospital cardiac arrest, left-sided valvular heart disease, the advocacy potential of these CVD statistics, and progress towards World Health Organization (WHO) 2025 targets for non-communicable diseases. Salient observations in this report: (i) Females born in ESC member countries in 2018 are expected to live 80.8 years and males 74.8 years. Life expectancy is longer in high income (81.6 years) compared with middle-income (74.2 years) countries. (ii) In 2018, high-income countries spent, on average, four times more on healthcare than middle-income countries. (iii) The median PM2.5 concentrations in 2019 were over twice as high in middle-income ESC member countries compared with high-income countries and exceeded the EU air quality standard in 14 countries, all middle-income. (iv) In 2016, more than one in five adults across the ESC member countries were obese with similar prevalence in high and low-income countries. The prevalence of obesity has more than doubled over the past 35 years. (v) The burden of CVD falls hardest on middle-income ESC member countries where estimated incidence rates are ∼30% higher compared with high-income countries. This is reflected in disability-adjusted life years due to CVD which are nearly four times as high in middle-income compared with high-income countries. (vi) The incidence of calcific aortic valve disease has increased seven-fold during the last 30 years, with age-standardized rates four times as high in high-income compared with middle-income countries. (vii) Although the total number of CVD deaths across all countries far exceeds the number of cancer deaths for both sexes, there are 15 ESC member countries in which cancer accounts for more deaths than CVD in males and five-member countries in which cancer accounts for more deaths than CVD in females. (viii) The under-resourced status of middle-income countries is associated with a severe procedural deficit compared with high-income countries in terms of coronary intervention, ablation procedures, device implantation, and cardiac surgical procedures. CONCLUSION: Risk factors and unhealthy behaviours are potentially reversible, and this provides a huge opportunity to address the health inequalities across ESC member countries that are highlighted in this report. It seems clear, however, that efforts to seize this opportunity are falling short and present evidence suggests that most of the WHO NCD targets for 2025 are unlikely to be met across ESC member countries.


Asunto(s)
Cardiología , Enfermedades Cardiovasculares , Sistema Cardiovascular , Adulto , Enfermedades Cardiovasculares/epidemiología , Femenino , Humanos , Renta , Masculino , Factores de Riesgo
13.
J Mol Cell Cardiol ; 162: 119-129, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34492228

RESUMEN

Histone deacetylase 4 (HDAC4) is a member of class IIa histone deacetylases (class IIa HDACs) and is believed to possess a low intrinsic deacetylase activity. However, HDAC4 sufficiently represses distinct transcription factors (TFs) such as the myocyte enhancer factor 2 (MEF2). Transcriptional repression by HDAC4 has been suggested to be mediated by the recruitment of other chromatin-modifying enzymes, such as methyltransferases or class I histone deacetylases. However, this concept has not been investigated by an unbiased approach. Therefore, we studied the histone modifications H3K4me3, H3K9ac, H3K27ac, H3K9me2 and H3K27me3 in a genome-wide approach using HDAC4-deficient cardiomyocytes. We identified a general epigenetic shift from a 'repressive' to an 'active' status, characterized by an increase of H3K4me3, H3K9ac and H3K27ac and a decrease of H3K9me2 and H3K27me3. In HDAC4-deficient cardiomyocytes, MEF2 binding sites were considerably overrepresented in upregulated promoter regions of H3K9ac and H3K4me3. For example, we identified the promoter of Adprhl1 as a new genomic target of HDAC4 and MEF2. Overexpression of HDAC4 in cardiomyocytes was able to repress the transcription of the Adprhl1 promoter in the presence of the methyltransferase SUV39H1. On a genome-wide level, the decrease of H3K9 methylation did not change baseline expression but was associated with exercise-induced gene expression. We conclude that HDAC4, on the one hand, associates with activating histone modifications, such as H3K4me3 and H3K9ac. A functional consequence, on the other hand, requires an indirect regulation of H3K9me2. H3K9 hypomethylation in HDAC4 target genes ('first hit') plus a 'second hit' (e.g., exercise) determines the transcriptional response.


Asunto(s)
Represión Epigenética , Histona Desacetilasas , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Metilación , Procesamiento Proteico-Postraduccional
14.
Immunology ; 165(2): 158-170, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34606637

RESUMEN

Treatment of myocarditis is often limited to symptomatic treatment due to unknown pathomechanisms. In order to identify new therapeutic approaches, the contribution of locked nucleic acid antisense oligonucleotides (LNA ASOs) in autoimmune myocarditis was investigated. Hence, A/J mice were immunized with cardiac troponin I (TnI) to induce experimental autoimmune myocarditis (EAM) and treated with LNA ASOs. The results showed an unexpected anti-inflammatory effect for one administered LNA ASO MB_1114 by reducing cardiac inflammation and fibrosis. The target sequence of MB_1114 was identified as lactate dehydrogenase B (mLDHB). For further analysis, mice received mLdhb-specific GapmeR during induction of EAM. Here, mice receiving the mLdhb-specific GapmeR showed increased protein levels of cardiac mLDHB and a reduced cardiac inflammation and fibrosis. The effect of increased cardiac mLDHB protein level was associated with a downregulation of genes of reactive oxygen species (ROS)-associated proteins, indicating a reduction in ROS. Here, the suppression of murine pro-apoptotic Bcl-2-associated X protein (mBax) was also observed. In our study, an unexpected anti-inflammatory effect of LNA ASO MB_1114 and mLdhb-specific GapmeR during induction of EAM could be demonstrated in vivo. This effect was associated with increased protein levels of cardiac mLDHB, mBax suppression and reduced ROS activation. Thus, LDHB and LNA ASOs may be considered as a promising target for directed therapy of myocarditis. Nevertheless, further investigations are necessary to clarify the mechanism of action of anti-inflammatory LDHB-triggered effects.


Asunto(s)
Antiinflamatorios/farmacología , Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/metabolismo , L-Lactato Deshidrogenasa/antagonistas & inhibidores , Miocarditis/etiología , Miocarditis/metabolismo , Oligonucleótidos/farmacología , Animales , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/tratamiento farmacológico , Biomarcadores , Biopsia , Citocinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Inhibidores Enzimáticos/farmacología , Femenino , Inmunohistoquímica , Mediadores de Inflamación/metabolismo , Isoenzimas/antagonistas & inhibidores , Ratones , Miocarditis/diagnóstico , Miocarditis/tratamiento farmacológico , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/farmacología , Especies Reactivas de Oxígeno/metabolismo
15.
N Engl J Med ; 381(16): 1524-1534, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31475799

RESUMEN

BACKGROUND: The relative merits of ticagrelor as compared with prasugrel in patients with acute coronary syndromes for whom invasive evaluation is planned are uncertain. METHODS: In this multicenter, randomized, open-label trial, we randomly assigned patients who presented with acute coronary syndromes and for whom invasive evaluation was planned to receive either ticagrelor or prasugrel. The primary end point was the composite of death, myocardial infarction, or stroke at 1 year. A major secondary end point (the safety end point) was bleeding. RESULTS: A total of 4018 patients underwent randomization. A primary end-point event occurred in 184 of 2012 patients (9.3%) in the ticagrelor group and in 137 of 2006 patients (6.9%) in the prasugrel group (hazard ratio, 1.36; 95% confidence interval [CI], 1.09 to 1.70; P = 0.006). The respective incidences of the individual components of the primary end point in the ticagrelor group and the prasugrel group were as follows: death, 4.5% and 3.7%; myocardial infarction, 4.8% and 3.0%; and stroke, 1.1% and 1.0%. Definite or probable stent thrombosis occurred in 1.3% of patients assigned to ticagrelor and 1.0% of patients assigned to prasugrel, and definite stent thrombosis occurred in 1.1% and 0.6%, respectively. Major bleeding (as defined by the Bleeding Academic Research Consortium scale) was observed in 5.4% of patients in the ticagrelor group and in 4.8% of patients in the prasugrel group (hazard ratio, 1.12; 95% CI, 0.83 to 1.51; P = 0.46). CONCLUSIONS: Among patients who presented with acute coronary syndromes with or without ST-segment elevation, the incidence of death, myocardial infarction, or stroke was significantly lower among those who received prasugrel than among those who received ticagrelor, and the incidence of major bleeding was not significantly different between the two groups. (Funded by the German Center for Cardiovascular Research and Deutsches Herzzentrum München; ISAR-REACT 5 ClinicalTrials.gov number, NCT01944800.).


Asunto(s)
Síndrome Coronario Agudo/tratamiento farmacológico , Inhibidores de Agregación Plaquetaria/uso terapéutico , Clorhidrato de Prasugrel/uso terapéutico , Antagonistas del Receptor Purinérgico P2Y/uso terapéutico , Ticagrelor/uso terapéutico , Síndrome Coronario Agudo/mortalidad , Síndrome Coronario Agudo/terapia , Anciano , Trombosis Coronaria/epidemiología , Femenino , Hemorragia/inducido químicamente , Humanos , Incidencia , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Infarto del Miocardio/epidemiología , Infarto del Miocardio/prevención & control , Intervención Coronaria Percutánea , Inhibidores de Agregación Plaquetaria/efectos adversos , Clorhidrato de Prasugrel/efectos adversos , Antagonistas del Receptor Purinérgico P2Y/efectos adversos , Stents , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/prevención & control , Ticagrelor/efectos adversos
16.
N Engl J Med ; 380(26): 2529-2540, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31242362

RESUMEN

BACKGROUND: Data regarding high-sensitivity troponin concentrations in patients presenting to the emergency department with symptoms suggestive of myocardial infarction may be useful in determining the probability of myocardial infarction and subsequent 30-day outcomes. METHODS: In 15 international cohorts of patients presenting to the emergency department with symptoms suggestive of myocardial infarction, we determined the concentrations of high-sensitivity troponin I or high-sensitivity troponin T at presentation and after early or late serial sampling. The diagnostic and prognostic performance of multiple high-sensitivity troponin cutoff combinations was assessed with the use of a derivation-validation design. A risk-assessment tool that was based on these data was developed to estimate the risk of index myocardial infarction and of subsequent myocardial infarction or death at 30 days. RESULTS: Among 22,651 patients (9604 in the derivation data set and 13,047 in the validation data set), the prevalence of myocardial infarction was 15.3%. Lower high-sensitivity troponin concentrations at presentation and smaller absolute changes during serial sampling were associated with a lower likelihood of myocardial infarction and a lower short-term risk of cardiovascular events. For example, high-sensitivity troponin I concentrations of less than 6 ng per liter and an absolute change of less than 4 ng per liter after 45 to 120 minutes (early serial sampling) resulted in a negative predictive value of 99.5% for myocardial infarction, with an associated 30-day risk of subsequent myocardial infarction or death of 0.2%; a total of 56.5% of the patients would be classified as being at low risk. These findings were confirmed in an external validation data set. CONCLUSIONS: A risk-assessment tool, which we developed to integrate the high-sensitivity troponin I or troponin T concentration at emergency department presentation, its dynamic change during serial sampling, and the time between the obtaining of samples, was used to estimate the probability of myocardial infarction on emergency department presentation and 30-day outcomes. (Funded by the German Center for Cardiovascular Research [DZHK]; ClinicalTrials.gov numbers, NCT00470587, NCT02355457, NCT01852123, NCT01994577, and NCT03227159; and Australian New Zealand Clinical Trials Registry numbers, ACTRN12611001069943, ACTRN12610000766011, ACTRN12613000745741, and ACTRN12611000206921.).


Asunto(s)
Infarto del Miocardio/sangre , Infarto del Miocardio/diagnóstico , Medición de Riesgo/métodos , Troponina/sangre , Adulto , Anciano , Biomarcadores/sangre , Estudios de Cohortes , Servicio de Urgencia en Hospital , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Sensibilidad y Especificidad , Troponina I/sangre
17.
Basic Res Cardiol ; 117(1): 44, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36068417

RESUMEN

Myocardial infarction (MI) with subsequent depression is associated with increased cardiac mortality. Impaired central mineralocorticoid (MR) and glucocorticoid receptor (GR) equilibrium has been suggested as a key mechanism in the pathogenesis of human depression. Here, we investigate if deficient central MR/GR signaling is causative for a poor outcome after MI in mice. Mice with an inducible forebrain-specific MR/GR knockout (MR/GR-KO) underwent baseline and follow-up echocardiography every 2 weeks after MI or sham operation. Behavioral testing at 4 weeks confirmed significant depressive-like behavior and, strikingly, a higher mortality after MI, while cardiac function and myocardial damage remained unaffected. Telemetry revealed cardiac autonomic imbalance with marked bradycardia and ventricular tachycardia (VT) upon MI in MR/GR-KO. Mechanistically, we found a higher responsiveness to atropine, pointing to impaired parasympathetic tone of 'depressive' mice after MI. Serum corticosterone levels were increased but-in line with the higher vagal tone-plasma and cardiac catecholamines were decreased. MR/GR deficiency in the forebrain led to significant depressive-like behavior and a higher mortality after MI. This was accompanied by increased vagal tone, depleted catecholaminergic compensatory capacity and VTs. Thus, limbic MR/GR disequilibrium may contribute to the impaired outcome of depressive patients after MI and possibly explain the lack of anti-depressive treatment benefit.


Asunto(s)
Depresión , Infarto del Miocardio , Animales , Humanos , Ratones , Infarto del Miocardio/patología , Miocardio/patología , Prosencéfalo/metabolismo , Receptores de Glucocorticoides/metabolismo
18.
Circ Res ; 127(5): 631-646, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32418505

RESUMEN

RATIONALE: Cardiac CITED4 (CBP/p300-interacting transactivators with E [glutamic acid]/D [aspartic acid]-rich-carboxylterminal domain4) is induced by exercise and is sufficient to cause physiological hypertrophy and mitigate adverse ventricular remodeling after ischemic injury. However, the role of endogenous CITED4 in response to physiological or pathological stress is unknown. OBJECTIVE: To investigate the role of CITED4 in murine models of exercise and pressure overload. METHODS AND RESULTS: We generated cardiomyocyte-specific CITED4 knockout mice (C4KO) and subjected them to an intensive swim exercise protocol as well as transverse aortic constriction (TAC). Echocardiography, Western blotting, qPCR, immunohistochemistry, immunofluorescence, and transcriptional profiling for mRNA and miRNA (microRNA) expression were performed. Cellular crosstalk was investigated in vitro. CITED4 deletion in cardiomyocytes did not affect baseline cardiac size or function in young adult mice. C4KO mice developed modest cardiac dysfunction and dilation in response to exercise. After TAC, C4KOs developed severe heart failure with left ventricular dilation, impaired cardiomyocyte growth accompanied by reduced mTOR (mammalian target of rapamycin) activity and maladaptive cardiac remodeling with increased apoptosis, autophagy, and impaired mitochondrial signaling. Interstitial fibrosis was markedly increased in C4KO hearts after TAC. RNAseq revealed induction of a profibrotic miRNA network. miR30d was decreased in C4KO hearts after TAC and mediated crosstalk between cardiomyocytes and fibroblasts to modulate fibrosis. miR30d inhibition was sufficient to increase cardiac dysfunction and fibrosis after TAC. CONCLUSIONS: CITED4 protects against pathological cardiac remodeling by regulating mTOR activity and a network of miRNAs mediating cardiomyocyte to fibroblast crosstalk. Our findings highlight the importance of CITED4 in response to both physiological and pathological stimuli.


Asunto(s)
Cardiomegalia Inducida por el Ejercicio , Hipertrofia Ventricular Izquierda/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción/metabolismo , Función Ventricular Izquierda , Remodelación Ventricular , Animales , Comunicación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Regulación de la Expresión Génica , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/patología , Ratas , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Transcriptoma
19.
J Immunol ; 205(8): 2276-2286, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32938726

RESUMEN

The number and activity of T cell subsets in the atherosclerotic plaques are critical for the prognosis of patients with acute coronary syndrome. ß2 Integrin activation is pivotal for T cell recruitment and correlates with future cardiac events. Despite this knowledge, differential regulation of adhesiveness in T cell subsets has not been explored yet. In this study, we show that in human T cells, SDF-1α-mediated ß2 integrin activation is driven by a, so far, not-described reactive oxidative species (ROS)-regulated calcium influx. Furthermore, we show that CD4+CD28null T cells represent a highly reactive subset showing 25-fold stronger ß2 integrin activation upon SDF-1α stimulation compared with CD28+ T cells. Interestingly, ROS-dependent Ca release was much more prevalent in the pathogenetically pivotal CD28null subset compared with the CD28+ T cells, whereas the established mediators of the classical pathways for ß2 integrin activation (PKC, PI3K, and PLC) were similarly activated in both T cell subsets. Thus, interference with the calcium flux attenuates spontaneous adhesion of CD28null T cells from acute coronary syndrome patients, and calcium ionophores abolished the observed differences in the adhesion properties between CD28+ and CD28null T cells. Likewise, the adhesion of these T cell subsets was indistinguishable in the presence of exogenous ROS/H2O2 Together, these data provide a molecular explanation of the role of ROS in pathogenesis of plaque destabilization.


Asunto(s)
Síndrome Coronario Agudo/inmunología , Antígenos CD18/inmunología , Linfocitos T CD4-Positivos/inmunología , Señalización del Calcio/inmunología , Especies Reactivas de Oxígeno/inmunología , Síndrome Coronario Agudo/patología , Antígenos CD28/inmunología , Linfocitos T CD4-Positivos/patología , Quimiocina CXCL12/inmunología , Femenino , Humanos , Masculino
20.
Mol Ther ; 29(8): 2499-2513, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-33839322

RESUMEN

Recurrent episodes of decompensated heart failure (HF) represent an emerging cause of hospitalizations in developed countries with an urgent need for effective therapies. Recently, the pregnancy-related hormone relaxin (RLN) was found to mediate cardio-protective effects and act as a positive inotrope in the cardiovascular system. RLN binds to the RLN family peptide receptor 1 (RXFP1), which is predominantly expressed in atrial cardiomyocytes. We therefore hypothesized that ventricular RXFP1 expression might exert potential therapeutic effects in an in vivo model of cardiac dysfunction. Thus, mice were exposed to pressure overload by transverse aortic constriction and treated with AAV9 to ectopically express RXFP1. To activate RXFP1 signaling, RLN was supplemented subcutaneously. Ventricular RXFP1 expression was well tolerated. Additional RLN administration not only abrogated HF progression but restored left ventricular systolic function. In accordance, upregulation of fetal genes and pathological remodeling markers were significantly reduced. In vitro, RLN stimulation of RXFP1-expressing cardiomyocytes induced downstream signaling, resulting in protein kinase A (PKA)-specific phosphorylation of phospholamban (PLB), which was distinguishable from ß-adrenergic activation. PLB phosphorylation corresponded to increased calcium amplitude and contractility. In conclusion, our results demonstrate that ligand-activated cardiac RXFP1 gene therapy represents a therapeutic approach to attenuate HF with the potential to adjust therapy by exogenous RLN supplementation.


Asunto(s)
Terapia Genética/métodos , Insuficiencia Cardíaca/terapia , Receptores Acoplados a Proteínas G/genética , Receptores de Péptidos/genética , Relaxina/administración & dosificación , Animales , Proteínas de Unión al Calcio/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Vectores Genéticos/administración & dosificación , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Humanos , Inyecciones Subcutáneas , Ligandos , Masculino , Ratones , Fosforilación , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Resultado del Tratamiento , Función Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA