RESUMEN
High-throughput phenotyping (HTP) has expanded the dimensionality of data in plant research; however, HTP has resulted in few novel biological discoveries to date. Field-based HTP (FHTP), using small unoccupied aerial vehicles (UAVs) equipped with imaging sensors, can be deployed routinely to monitor segregating plant population interactions with the environment under biologically meaningful conditions. Here, flowering dates and plant height, important phenological fitness traits, were collected on 520 segregating maize recombinant inbred lines (RILs) in both irrigated and drought stress trials in 2018. Using UAV phenomic, single nucleotide polymorphism (SNP) genomic, as well as combined data, flowering times were predicted using several scenarios. Untested genotypes were predicted with 0.58, 0.59, and 0.41 prediction ability for anthesis, silking, and terminal plant height, respectively, using genomic data, but prediction ability increased to 0.77, 0.76, and 0.58 when phenomic and genomic data were used together. Using the phenomic data in a genome-wide association study, a heat-related candidate gene (GRMZM2G083810; hsp18f) was discovered using temporal reflectance phenotypes belonging to flowering times (both irrigated and drought) trials where heat stress also peaked. Thus, a relationship between plants and abiotic stresses belonging to a specific time of growth was revealed only through use of temporal phenomic data. Overall, this study showed that (i) it is possible to predict complex traits using high dimensional phenomic data between different environments, and (ii) temporal phenomic data can reveal a time-dependent association between genotypes and abiotic stresses, which can help understand mechanisms to develop resilient plants.
Asunto(s)
Fenómica , Zea mays , Zea mays/genética , Estudio de Asociación del Genoma Completo , Fenotipo , Genómica/métodosRESUMEN
Nitrogen dioxide (NO2) is a primary constituent of traffic-related air pollution and has well established harmful environmental and human-health impacts. Knowledge of the spatiotemporal distribution of NO2 is critical for exposure and risk assessment. A common approach for assessing air pollution exposure is linear regression involving spatially referenced covariates, known as land-use regression (LUR). We develop a scalable approach for simultaneous variable selection and estimation of LUR models with spatiotemporally correlated errors, by combining a general-Vecchia Gaussian-process approximation with a penalty on the LUR coefficients. In comparisons to existing methods using simulated data, our approach resulted in higher model-selection specificity and sensitivity and in better prediction in terms of calibration and sharpness, for a wide range of relevant settings. In our spatiotemporal analysis of daily, US-wide, ground-level NO2 data, our approach was more accurate, and produced a sparser and more interpretable model. Our daily predictions elucidate spatiotemporal patterns of NO2 concentrations across the United States, including significant variations between cities and intra-urban variation. Thus, our predictions will be useful for epidemiological and risk-assessment studies seeking daily, national-scale predictions, and they can be used in acute-outcome health-risk assessments.
RESUMEN
People are increasingly concerned with understanding their personal environment, including possible exposure to harmful air pollutants. In order to make informed decisions on their day-to-day activities, they are interested in real-time information on a localized scale. Publicly available, fine-scale, high-quality air pollution measurements acquired using mobile monitors represent a paradigm shift in measurement technologies. A methodological framework utilizing these increasingly fine-scale measurements to provide real-time air pollution maps and short-term air quality forecasts on a fine-resolution spatial scale could prove to be instrumental in increasing public awareness and understanding. The Google Street View study provides a unique source of data with spatial and temporal complexities, with the potential to provide information about commuter exposure and hot spots within city streets with high traffic. We develop a computationally efficient spatiotemporal model for these data and use the model to make short-term forecasts and high-resolution maps of current air pollution levels. We also show via an experiment that mobile networks can provide more nuanced information than an equally-sized fixed-location network. This modeling framework has important real-world implications in understanding citizens' personal environments, as data production and real-time availability continue to be driven by the ongoing development and improvement of mobile measurement technologies.
RESUMEN
The Gaussian process is an indispensable tool for spatial data analysts. The onset of the "big data" era, however, has lead to the traditional Gaussian process being computationally infeasible for modern spatial data. As such, various alternatives to the full Gaussian process that are more amenable to handling big spatial data have been proposed. These modern methods often exploit low-rank structures and/or multi-core and multi-threaded computing environments to facilitate computation. This study provides, first, an introductory overview of several methods for analyzing large spatial data. Second, this study describes the results of a predictive competition among the described methods as implemented by different groups with strong expertise in the methodology. Specifically, each research group was provided with two training datasets (one simulated and one observed) along with a set of prediction locations. Each group then wrote their own implementation of their method to produce predictions at the given location and each was subsequently run on a common computing environment. The methods were then compared in terms of various predictive diagnostics. Supplementary materials regarding implementation details of the methods and code are available for this article online. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary materials for this article are available at 10.1007/s13253-018-00348-w.