Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci Res ; 102(1): e25271, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284837

RESUMEN

Similar to the human brain, Drosophila glia may well be divided into several subtypes that each carries out specific functions. Glial GPCRs play key roles in crosstalk between neurons and glia. Drosophila Lgr4 (dLgr4) is a human relaxin receptor homolog involved in angiogenesis, cardiovascular regulation, collagen remodeling, and wound healing. A recent study suggests that ilp7 might be the ligand for Lgr4 and regulates escape behavior of Drosophila larvae. Here we demonstrate that Drosophila Lgr4 expression in glial cells, not neurons, is necessary for early development, adult behavior, and lifespan. Reducing the Lgr4 level in glial cells disrupts Drosophila development, while knocking down other LGR family members in glia has no impact. Adult-specific knockdown of Lgr4 in glia but not neurons reduce locomotion, male reproductive success, and animal longevity. The investigation of how glial expression of Lgr4 contributes to this behavioral alteration will increase our understanding of how insulin signaling via glia selectively modulates neuronal activity and behavior.


Asunto(s)
Proteínas de Drosophila , Drosophila , Neuroglía , Receptores Acoplados a Proteínas G , Animales , Masculino , Encéfalo , Neuronas , Receptores de Neuropéptido , Receptores Acoplados a Proteínas G/genética , Proteínas de Drosophila/genética
2.
Am J Physiol Regul Integr Comp Physiol ; 326(2): R110-R120, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38009212

RESUMEN

Exercise intolerance is a hallmark symptom of heart failure and to a large extent stems from reductions in cardiac output that occur due to the inherent ventricular dysfunction coupled with enhanced muscle metaboreflex-induced functional coronary vasoconstriction, which limits increases in coronary blood flow. This creates a further mismatch between O2 delivery and O2 demand, which may activate the cardiac sympathetic afferent reflex (CSAR), causing amplification of the already increased sympathetic activity in a positive-feedback fashion. We used our chronically instrumented conscious canine model to evaluate if chronic ablation of afferents responsible for the CSAR would attenuate the gain of muscle metaboreflex before and after induction of heart failure. After afferent ablation, the gain of the muscle metaboreflex control of mean arterial pressure was significantly reduced before (-239.5 ± 16 to -95.2 ± 8 mmHg/L/min) and after the induction of heart failure (-185.6 ± 14 to -95.7 ± 12 mmHg/L/min). Similar results were observed for the strength (gain) of muscle metaboreflex control of heart rate, cardiac output, and ventricular contractility. Thus, we conclude that the CSAR contributes significantly to the strength of the muscle metaboreflex in normal animals with heart failure serving as an effective positive-feedback amplifier thereby further increasing sympathetic activity.NEW & NOTEWORTHY The powerful pressor responses from the CSAR arise via O2 delivery versus O2 demand imbalance. Muscle metaboreflex activation (MMA) simultaneously elicits coronary vasoconstriction (which is augmented in heart failure) and profound increases in cardiac work thereby upsetting oxygen balance. Whether MMA activates the CSAR thereby amplifying MMA responses is unknown. We observed that removal of the CSAR afferents attenuated the strength of the muscle metaboreflex in normal and subjects with heart failure.


Asunto(s)
Insuficiencia Cardíaca , Músculo Esquelético , Animales , Perros , Humanos , Retroalimentación , Vasoconstricción , Reflejo/fisiología , Frecuencia Cardíaca , Presión Sanguínea
3.
Am J Physiol Heart Circ Physiol ; 325(5): H998-H1011, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37682236

RESUMEN

Patients with heart failure with reduced (HFrEF) and preserved ejection fraction (HFpEF) exhibit severe exercise intolerance that may be due, in part, to inappropriate cardiovascular and hemodynamic adjustments to exercise. Several neural mechanisms and locally released vasoactive substances work in concert through complex interactions to ensure proper adjustments to meet the metabolic demands of the contracting skeletal muscle. Specifically, accumulating evidence suggests that disease-related alterations in neural mechanisms (e.g., central command, exercise pressor reflex, arterial baroreflex, and cardiopulmonary baroreflex) contribute to heightened sympathetic activation and impaired ability to attenuate sympathetic vasoconstrictor responsiveness that may contribute to reduced skeletal muscle blood flow and severe exercise intolerance in patients with HFrEF. In contrast, little is known regarding these important aspects of physiology in patients with HFpEF, though emerging data reveal heightened sympathetic activation and attenuated skeletal muscle blood flow during exercise in this patient population that may be attributable to dysregulated neural control of the circulation. The overall goal of this review is to provide a brief overview of the current understanding of disease-related alterations in the integrative neural cardiovascular responses to exercise in both HFrEF and HFpEF phenotypes, with a focus on sympathetic nervous system regulation during exercise.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Volumen Sistólico/fisiología , Sistema Nervioso Simpático , Barorreflejo/fisiología , Arterias/fisiología , Músculo Esquelético/metabolismo
4.
Exp Physiol ; 106(2): 401-411, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33226720

RESUMEN

NEW FINDINGS: What is the central question of this study? Does the muscle metaboreflex affect the ratio of left ventricular contraction/relaxation rates and does heart failure impact this relationship. What is the main finding and its importance? The effect of muscle metaboreflex activation on the ventricular relaxation rate was significantly attenuated in heart failure. Heart failure attenuates the exercise and muscle metaboreflex-induced changes in the contraction/relaxation ratio. In heart failure, the reduced ability to raise cardiac output during muscle metaboreflex activation may not solely be due to attenuation of ventricular contraction but also alterations in ventricular relaxation and diastolic function. ABSTRACT: The relationship between contraction and relaxation rates of the left ventricle varies with exercise. In in vitro models, this ratio was shown to be relatively unaltered by changes in sarcomere length, frequency of stimulation, and ß-adrenergic stimulation. We investigated whether the ratio of contraction to relaxation rate is maintained in the whole heart during exercise and muscle metaboreflex activation and whether heart failure alters these relationships. We observed that in healthy subjects the ratio of contraction to relaxation increases from rest to exercise as a result of a higher increase in contraction relative to relaxation. During muscle metaboreflex activation the ratio of contraction to relaxation is significantly reduced towards 1.0 due to a large increase in relaxation rate matching contraction rate. In heart failure, contraction and relaxation rates are significantly reduced, and increases during exercise are attenuated. A significant increase in the ratio was observed from rest to exercise although baseline ratio values were significantly reduced close to 1.0 when compared to healthy subjects. There was no significant change observed between exercise and muscle metaboreflex activation nor was the ratio during muscle metaboreflex activation significantly different between heart failure and control. We conclude that heart failure reduces the muscle metaboreflex gain and contraction and relaxation rates. Furthermore, we observed that the ratio of the contraction and relaxation rates during muscle metaboreflex activation is not significantly different between control and heart failure, but significant changes in the ratio in healthy subjects due to increased relaxation rate were abolished in heart failure.


Asunto(s)
Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/fisiopatología , Corazón/fisiopatología , Contracción Miocárdica/fisiología , Reflejo/fisiología , Animales , Gasto Cardíaco/fisiología , Modelos Animales de Enfermedad , Perros , Femenino , Hemodinámica/fisiología , Masculino , Resistencia Vascular/fisiología
5.
Am J Physiol Regul Integr Comp Physiol ; 318(2): R311-R319, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31823673

RESUMEN

Patients with type 2 diabetes (T2D) exhibit greater daytime blood pressure (BP) variability, increasing their cardiovascular risk. Given the number of daily activities that incorporate short-duration isometric muscle contractions (e.g., carrying groceries), herein we investigated BP and muscle sympathetic nerve activity (MSNA) responses at the onset of isometric handgrip (HG). We tested the hypothesis that, relative to control subjects, patients with T2D would exhibit exaggerated pressor and MSNA responses to the immediate onset of HG. Mean arterial pressure (MAP) and MSNA were quantified during the first 30 s of isometric HG at 30% and 40% of maximal voluntary contraction (MVC) and during a cold pressor test (CPT), a nonexercise sympathoexcitatory stimulus. The onset of 30% MVC HG evoked similar increases in MAP between groups (P = 0.17); however, the increase in MSNA was significantly greater in patients with T2D versus control subjects with the largest group difference at 20 s (P < 0.001). At the onset of 40% MVC HG, patients with T2D demonstrated greater increases in MAP (e.g., 10 s, T2D: 9 ± 1 mmHg, controls: 5 ± 2 mmHg; P = 0.04). MSNA was also greater in patients with T2D at 40% MVC onset but differences were only significant at the 20-30 s timepoint (T2D: 15 ± 3 bursts/min, controls: -2 ± 4 bursts/min; P < 0.001). Similarly, MAP and MSNA responses were augmented during the onset of CPT in T2D patients. These findings demonstrate exaggerated pressor and MSNA reactivity in patients with T2D, with rapid and robust responses to both isometric contractions and cold stress. This hyper-responsiveness may contribute to daily surges in BP in patients with T2D, increasing their short-term and long-term cardiovascular risk.


Asunto(s)
Presión Arterial , Diabetes Mellitus Tipo 2/fisiopatología , Contracción Isométrica , Músculo Esquelético/inervación , Reflejo , Sistema Nervioso Simpático/fisiopatología , Biomarcadores/sangre , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/diagnóstico , Femenino , Hemoglobina Glucada/metabolismo , Humanos , Lípidos/sangre , Masculino , Persona de Mediana Edad , Missouri , Estudios Retrospectivos , Texas , Factores de Tiempo
6.
Am J Physiol Regul Integr Comp Physiol ; 319(3): R323-R328, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32783690

RESUMEN

Black men have attenuated increases in forearm vascular conductance (FVC) and forearm blood flow (FBF) during moderate- and high-intensity rhythmic handgrip exercise compared with White men, but the underlying mechanisms are unclear. Here, we tested for the first time the hypothesis that functional sympatholysis (i.e., attenuation of sympathetic vasoconstriction in the exercising muscles) is impaired in Black men compared with White men. Thirteen White and 14 Black healthy young men were studied. FBF (duplex Doppler ultrasound) and mean arterial pressure (MAP; Finometer) were measured at rest and during rhythmic handgrip exercise at 30% maximal voluntary contraction. FVC was calculated as FBF/MAP. Sympathetic activation was induced via lower body negative pressure (LBNP) at -20 Torr for 2 min at rest and from the 3rd to the 5th min of handgrip. Sympathetic vasoconstriction was assessed as percent reductions in FVC during LBNP. The groups presented similar resting FVC, FBF, and MAP. During LBNP at rest, reductions in FVC were not different between White (-35 ± 10%) and Black men (-32 ± 14%, P = 0.616), indicating similar reflex-induced sympathetic vasoconstriction. During handgrip exercise, there were minimal reductions in FVC with LBNP in either group (White: -1 ± 7%; Black: +1 ± 8%; P = 0.523), indicating functional sympatholysis in both groups. Thus, contrary to our hypothesis, our findings indicate a preserved functional sympatholysis in healthy young Black men compared with White men, suggesting that this mechanism does not appear to contribute to reduced exercise hyperemia during moderate-intensity rhythmic handgrip in this population.


Asunto(s)
Ejercicio Físico/fisiología , Fuerza de la Mano/fisiología , Consumo de Oxígeno/fisiología , Vasoconstricción/fisiología , Adulto , Humanos , Masculino , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Flujo Sanguíneo Regional/fisiología , Sistema Nervioso Simpático/fisiopatología
7.
Am J Physiol Regul Integr Comp Physiol ; 319(1): R1-R10, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32348680

RESUMEN

Dynamic exercise elicits robust increases in sympathetic activity in part due to muscle metaboreflex activation (MMA), a pressor response triggered by activation of skeletal muscle afferents. MMA during dynamic exercise increases arterial pressure by increasing cardiac output via increases in heart rate, ventricular contractility, and central blood volume mobilization. In heart failure, ventricular function is compromised, and MMA elicits peripheral vasoconstriction. Ventricular-vascular coupling reflects the efficiency of energy transfer from the left ventricle to the systemic circulation and is calculated as the ratio of effective arterial elastance (Ea) to left ventricular maximal elastance (Emax). The effect of MMA on Ea in normal subjects is unknown. Furthermore, whether muscle metaboreflex control of Ea is altered in heart failure has not been investigated. We utilized two previously published methods of evaluating Ea [end-systolic pressure/stroke volume (EaPV)] and [heart rate × vascular resistance (EaZ)] during rest, mild treadmill exercise, and MMA (induced via partial reductions in hindlimb blood flow imposed during exercise) in chronically instrumented conscious canines before and after induction of heart failure via rapid ventricular pacing. In healthy animals, MMA elicits significant increases in effective arterial elastance and stroke work that likely maintains ventricular-vascular coupling. In heart failure, Ea is high, and MMA-induced increases are exaggerated, which further exacerbates the already uncoupled ventricular-vascular relationship, which likely contributes to the impaired ability to raise stroke work and cardiac output during exercise in heart failure.


Asunto(s)
Arterias/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal , Animales , Arterias/inervación , Perros , Elasticidad , Femenino , Frecuencia Cardíaca , Miembro Posterior/irrigación sanguínea , Masculino , Músculo Esquelético/inervación , Neuronas Aferentes , Reflejo/fisiología , Volumen Sistólico , Resistencia Vascular
8.
Exp Physiol ; 105(7): 1102-1110, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32362031

RESUMEN

NEW FINDINGS: What is the central question of this study? The prevalence of hypertension in black individuals exceeds that in other racial groups. Despite this well-known heightened risk, the underlying contributory factors remain incompletely understood. We hypothesized that young black men would exhibit augmented beat-to-beat blood pressure variability compared with white men and that black men would exhibit augmented total peripheral resistance variability. What is the main finding and its importance? We demonstrate that young, healthy black men exhibit greater resting beat-to-beat blood pressure variability compared with their white counterparts, which is accompanied by greater variability in total peripheral resistance. These swings in blood pressure over time might contribute to the enhanced cardiovascular risk profile in black individuals. ABSTRACT: The prevalence of hypertension in black (BL) individuals exceeds that in other racial groups. Recently, resting beat-to-beat blood pressure (BP) variability has been shown to predict cardiovascular risk and detect target organ damage better than ambulatory BP monitoring. Given the heightened risk in BL individuals, we hypothesized young BL men would exhibit augmented beat-to-beat BP variability compared with white (WH) men. Furthermore, given studies reporting reduced vasodilatation and augmented vasoconstriction in BL individuals, we hypothesized that BL men would exhibit augmented variability in total peripheral resistance (TPR). In 45 normotensive men (24 BL), beat-to-beat BP (Finometer) was measured during 10-20 min of quiet rest. Cardiac output and TPR were estimated (Modelflow method). Despite similar resting BP, BL men exhibited greater BP standard deviation (e.g. systolic BP SD; BL, 7.1 ± 2.2 mmHg; WH, 5.4 ± 1.5 mmHg; P = 0.006) compared with WH men, which was accompanied by a greater TPR SD (P = 0.003), but not cardiac output SD (P = 0.390). Other traditional measures of variability provided similar results. Histogram analysis indicated that BL men exhibited a greater percentage of cardiac cycles with BPs higher (> +10 mmHg higher) and lower (< -8 mmHg lower) than mean systolic BP compared with WH men (interaction, P < 0.001), which was accompanied by a greater percentage of cardiac cycles with high/low TPR (P < 0.001). In a subset of subjects (n = 30), reduced sympathetic baroreflex sensitivity was associated with augmented BP variability (r = -0.638, P < 0.001), whereas cardiac baroreflex sensitivity had no relationship (P = 0.447). Herein, we document an augmented beat-to-beat BP variability in young BL men, which coincided with fluctuations in vascular resistance and reduced sympathetic BRS.


Asunto(s)
Negro o Afroamericano , Presión Sanguínea , Resistencia Vascular , Adulto , Barorreflejo/fisiología , Gasto Cardíaco , Corazón/fisiología , Frecuencia Cardíaca , Humanos , Hipertensión/epidemiología , Masculino , Descanso , Población Blanca , Adulto Joven
9.
Am J Physiol Heart Circ Physiol ; 317(2): H308-H314, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31100010

RESUMEN

Increased consumption of inorganic phosphate (Pi), an abundant ingredient in processed foods, has been associated with elevated cardiovascular disease risk; however, studies investigating underlying mechanisms are limited. Recently, high dietary Pi was shown to exaggerate the pressor response to static muscle contraction in rodents in part because of overactivation of metabolically sensitive skeletal muscle afferents. Whether acute high Pi consumption affects muscle metaboreflex activation in humans remains unknown. Furthermore, although acute high Pi consumption has been shown to impair vascular function in young healthy men, equivocal results have been reported. Therefore, we hypothesized that acute high Pi consumption augments mean arterial pressure (MAP) responses during muscle metaboreflex activation, impairs endothelial function, and increases arterial stiffness in young healthy men. Subjects performed 35% maximal voluntary contraction static handgrip (HG), followed by postexercise ischemia (PEI) to isolate muscle metaboreflex activation. Resting flow-mediated dilation (FMD) and arterial stiffness were assessed. Measures were made before (pre) and 60 min after (post) subjects consumed either a high-phosphate drink (2,000 mg phosphorus and 1,520 mg sodium) or a sodium drink (1,520 mg sodium; control). MAP responses during HG (preΔ = +23 ± 3 mmHg; postΔ = +21 ± 2 mmHg; P = 0.101) and PEI (preΔ = +21 ± 4 mmHg; postΔ = +18 ± 3 mmHg; P = 0.184) were similar before and after Pi consumption. In contrast, FMD was significantly attenuated following Pi (pre = 5.1 ± 0.5%; post = 3.5 ± 0.5%; P = 0.010), whereas arterial stiffness remained unchanged. There were no changes in any measured variable after control drink consumption. In summary, although the muscle metaboreflex remains unaffected following acute high Pi consumption in young healthy men, endothelial function is impaired. NEW & NOTEWORTHY This study was the first to investigate the influence of acute high-phosphate consumption on the pressor response during isometric handgrip and isolated muscle metaboreflex activation during postexercise ischemia in young healthy humans. We demonstrated that a single high dose of phosphate (2,000 mg) did not augment blood pressure in response to exercise or isolated muscle metaboreflex activation, but endothelial function was blunted in young healthy men.


Asunto(s)
Arteria Braquial/fisiopatología , Células Quimiorreceptoras/metabolismo , Endotelio Vascular/fisiología , Metabolismo Energético , Músculo Esquelético , Fosfatos/administración & dosificación , Fósforo Dietético/administración & dosificación , Reflejo , Rigidez Vascular , Adaptación Fisiológica , Presión Arterial , Bebidas , Arteria Braquial/diagnóstico por imagen , Endotelio Vascular/diagnóstico por imagen , Voluntarios Sanos , Humanos , Masculino , Contracción Muscular , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/inervación , Músculo Esquelético/metabolismo , Fosfatos/metabolismo , Fósforo Dietético/metabolismo , Flujo Sanguíneo Regional , Factores de Tiempo , Adulto Joven
10.
Am J Physiol Heart Circ Physiol ; 314(1): H11-H18, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28939649

RESUMEN

When oxygen delivery to active muscle is insufficient to meet the metabolic demand during exercise, metabolites accumulate and stimulate skeletal muscle afferents, inducing a reflex increase in blood pressure, termed the muscle metaboreflex. In healthy individuals, muscle metaboreflex activation (MMA) during submaximal exercise increases arterial pressure primarily via an increase in cardiac output (CO), as little peripheral vasoconstriction occurs. This increase in CO partially restores blood flow to ischemic muscle. However, we recently demonstrated that MMA induces sympathetic vasoconstriction in ischemic active muscle, limiting the ability of the metaboreflex to restore blood flow. In heart failure (HF), increases in CO are limited, and metaboreflex-induced pressor responses occur predominantly via peripheral vasoconstriction. In the present study, we tested the hypothesis that vasoconstriction of ischemic active muscle is exaggerated in HF. Changes in hindlimb vascular resistance [femoral arterial pressure ÷ hindlimb blood flow (HLBF)] were observed during MMA (via graded reductions in HLBF) during mild exercise with and without α1-adrenergic blockade (prazosin, 50 µg/kg) before and after induction of HF. In normal animals, initial HLBF reductions caused metabolic vasodilation, while reductions below the metaboreflex threshold elicited reflex vasoconstriction, in ischemic active skeletal muscle, which was abolished after α1-adrenergic blockade. Metaboreflex-induced vasoconstriction of ischemic active muscle was exaggerated after induction of HF. This heightened vasoconstriction impairs the ability of the metaboreflex to restore blood flow to ischemic muscle in HF and may contribute to the exercise intolerance observed in these patients. We conclude that sympathetically mediated vasoconstriction of ischemic active muscle during MMA is exaggerated in HF. NEW & NOTEWORTHY We found that muscle metaboreflex-induced vasoconstriction of the ischemic active skeletal muscle from which the reflex originates is exaggerated in heart failure. This results in heightened metaboreflex activation, which further amplifies the reflex-induced vasoconstriction of the ischemic active skeletal muscle and contributes to exercise intolerance in patients.


Asunto(s)
Metabolismo Energético , Insuficiencia Cardíaca/fisiopatología , Isquemia/fisiopatología , Contracción Muscular , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/inervación , Reflejo , Vasoconstricción , Animales , Presión Arterial , Gasto Cardíaco , Modelos Animales de Enfermedad , Perros , Femenino , Insuficiencia Cardíaca/metabolismo , Miembro Posterior , Isquemia/metabolismo , Masculino , Músculo Esquelético/metabolismo , Oxígeno/sangre , Receptores Adrenérgicos alfa 1/metabolismo , Vasodilatación
11.
Am J Physiol Heart Circ Physiol ; 315(5): H1316-H1321, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30118345

RESUMEN

Previous studies have demonstrated that African-American (AA) individuals have heightened vasoconstrictor and reduced vasodilator responses under resting conditions compared with Caucasian-American (CA) individuals. However, potential differences in vascular responses to exercise remain unclear. Therefore, we tested the hypothesis that, compared with CA subjects, AA subjects would present an attenuated increase in forearm vascular conductance (FVC) during rhythmic handgrip exercise. Forearm blood flow (FBF; duplex Doppler ultrasound) and mean arterial pressure (MAP; finger photoplethysmography) were measured in healthy young CA ( n = 10) and AA ( n = 10) men during six trials of rhythmic handgrip performed at workloads of 4, 8, 12, 16, 20, and 24 kg. FVC (calculated as FBF/MAP), FBF, and MAP were similar between groups at rest (FVC: 63 ± 7 ml·min-1·100 mmHg-1 in CA subjects vs. 62 ± 7 ml·min-1·100 mmHg-1 in AA subjects, P = 0.862). There was an intensity-dependent increase in FVC during exercise in both groups; however, AA subjects presented lower FVC (interaction P < 0.001) at 8-, 12-, 16-, 20-, and 24-kg workloads (e.g., 24 kg: 324 ± 20 ml·min-1·100 mmHg-1 in CA subjects vs. 241 ± 21 ml·min-1·100 mmHg-1 in AA subjects, P < 0.001). FBF responses to exercise were also lower in AA subjects (interaction P < 0.001), whereas MAP responses did not differ between groups (e.g., ∆MAP at 24 kg: +19 ± 2 mmHg in CA subjects vs. +19 ± 2 mmHg in AA subjects, interaction P = 0.950). These findings indicate lower hyperemic responses to rhythmic handgrip exercise in AA men compared with CA men. NEW & NOTEWORTHY It is known that African-American individuals have heightened vasoconstriction and reduced vasodilation under resting conditions compared with Caucasian-American individuals. Here, we identified that the hyperemic response to moderate and high-intensity rhythmic handgrip exercise was lower in healthy young African-American men.


Asunto(s)
Negro o Afroamericano , Arteria Braquial/fisiología , Ejercicio Físico/fisiología , Fuerza de la Mano , Hemodinámica , Contracción Muscular , Músculo Esquelético/irrigación sanguínea , Población Blanca , Factores de Edad , Velocidad del Flujo Sanguíneo , Arteria Braquial/diagnóstico por imagen , Antebrazo , Humanos , Hiperemia/fisiopatología , Masculino , Flujo Sanguíneo Regional , Factores Sexuales , Ultrasonografía Doppler Dúplex , Adulto Joven
12.
Am J Physiol Heart Circ Physiol ; 315(5): H1383-H1392, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30074841

RESUMEN

Two powerful reflexes controlling cardiovascular function during exercise are the muscle metaboreflex and arterial baroreflex. In heart failure (HF), the strength and mechanisms of these reflexes are altered. Muscle metaboreflex activation (MMA) in normal subjects increases mean arterial pressure (MAP) primarily via increases in cardiac output (CO), whereas in HF the mechanism shifts to peripheral vasoconstriction. Baroreceptor unloading increases MAP via peripheral vasoconstriction, and this pressor response is blunted in HF. Baroreceptor unloading during MMA in normal animals elicits an enormous pressor response via combined increases in CO and peripheral vasoconstriction. The mode of interaction between these reflexes is intimately dependent on the parameter (e.g., MAP and CO) being investigated. The interaction between the two reflexes when activated simultaneously during dynamic exercise in HF is unknown. We activated the muscle metaboreflex in chronically instrumented dogs during mild exercise (via graded reductions in hindlimb blood flow) followed by baroreceptor unloading [via bilateral carotid occlusion (BCO)] before and after induction of HF. We hypothesized that BCO during MMA in HF would cause a smaller increase in MAP and a larger vasoconstriction of ischemic hindlimb vasculature, which would attenuate the restoration of blood flow to ischemic muscle observed in normal dogs. We observed that BCO during MMA in HF increases MAP by substantial vasoconstriction of all vascular beds, including ischemic active muscle, and that all cardiovascular responses, except ventricular function, exhibit occlusive interaction. We conclude that vasoconstriction of ischemic active skeletal muscle in response to baroreceptor unloading during MMA attenuates restoration of hindlimb blood flow. NEW & NOTEWORTHY We found that baroreceptor unloading during the muscle metaboreflex in heart failure results in occlusive interaction (except for ventricular function) with significant vasoconstriction of all vascular beds. In addition, restoration of blood flow to ischemic active muscle, via preferentially larger vasoconstriction of nonischemic beds, is significantly attenuated in heart failure.


Asunto(s)
Presión Arterial , Barorreflejo , Células Quimiorreceptoras/metabolismo , Metabolismo Energético , Insuficiencia Cardíaca/fisiopatología , Músculo Esquelético/inervación , Músculo Esquelético/metabolismo , Presorreceptores/fisiopatología , Adaptación Fisiológica , Animales , Gasto Cardíaco , Modelos Animales de Enfermedad , Perros , Femenino , Insuficiencia Cardíaca/metabolismo , Miembro Posterior , Masculino , Contracción Muscular , Flujo Sanguíneo Regional , Factores de Tiempo , Vasoconstricción
13.
Am J Physiol Regul Integr Comp Physiol ; 315(1): R84-R89, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29590558

RESUMEN

Evidence from animal studies indicates that hyperinsulinemia, without changes in glucose, increases ventilation via a carotid body-mediated mechanism. However, whether insulin elevates ventilation in humans independently of changes in glucose remains unclear. Therefore, we tested the hypothesis that insulin increases ventilation in humans during a hyperinsulinemic-euglycemic clamp in which insulin was elevated to postprandial concentrations while glucose was maintained at fasting concentrations. First, in 16 healthy young men ( protocol 1), we retrospectively analyzed respiration rate and estimated tidal volume from a pneumobelt to calculate minute ventilation during a hyperinsulinemic-euglycemic clamp. In addition, for a direct assessment of minute ventilation during a hyperinsulinemic-euglycemic clamp, we retrospectively analyzed breath-by-breath respiration rate and tidal volume from inspired/expired gasses in an additional 23 healthy young subjects ( protocol 2). Clamp infusion elevated minute ventilation from baseline in both protocols ( protocol 1: +11.9 ± 4.6% baseline, P = 0.001; protocol 2: +9.5 ± 3.8% baseline, P = 0.020). In protocol 1, peak changes in both respiration rate (+13.9 ± 3.0% baseline, P < 0.001) and estimated tidal volume (+16.9 ± 4.1% baseline, P = 0.001) were higher than baseline during the clamp. In protocol 2, tidal volume primarily increased during the clamp (+9.7 ± 3.7% baseline, P = 0.016), as respiration rate did not change significantly (+0.2 ± 1.8% baseline, P = 0.889). Collectively, we demonstrate for the first time in humans that elevated plasma insulin increases minute ventilation independent of changes in glucose.


Asunto(s)
Glucemia/metabolismo , Hiperinsulinismo/fisiopatología , Insulina/administración & dosificación , Pulmón/efectos de los fármacos , Ventilación Pulmonar/efectos de los fármacos , Adulto , Biomarcadores/sangre , Femenino , Técnica de Clampeo de la Glucosa , Humanos , Hiperinsulinismo/sangre , Insulina/sangre , Pulmón/fisiopatología , Masculino , Estudios Retrospectivos , Factores de Tiempo
14.
Exp Physiol ; 103(10): 1425-1434, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30110509

RESUMEN

NEW FINDINGS: What is the central question of this study? We aimed to examine leg vascular responses to brief periods of inactivity. What is the main finding and its importance? We demonstrate that a mere 10 min of sitting is sufficient to impair leg microvascular function (reactive hyperaemia). However, conduit artery vasodilatation (flow-mediated dilatation) was unaffected, indicating maintained macrovascular function. Interestingly, immobile supine rest also resulted in a reduction in microvascular function alone that was prevented when calf muscle contractions were performed. Collectively, these data highlight the susceptibility of the microcirculation to short periods of inactivity and the beneficial role of skeletal muscle contraction for vascular health. ABSTRACT: Prolonged sitting for 1-6 h has been shown to impair leg macrovascular [i.e. reduced flow-mediated dilatation (FMD)] and microvascular (i.e. reduced reactive hyperaemia) function. These impairments appear to be mediated through reductions in shear stress. Interestingly, a reduction in shear rate has been observed as early as 10 min into sitting. However, it is unknown whether this acute reduction in shear stress is sufficient to affect vascular function. Accordingly, we studied 18 young men and assessed popliteal artery FMD and reactive hyperaemia before (Baseline) and after (PostSit) a 10 min sitting period. Popliteal artery shear rate was significantly reduced during sitting (Baseline, 62 ± 35 s-1 ; 10 min sitting, 27 ± 13 s-1 ; P < 0.001). Macrovascular function was unaffected by 10 min of sitting (Baseline, 4.4 ± 2.1%; PostSit, 4.3 ± 2.3%; P = 0.97), but microvascular function was reduced (Baseline, 4852 ± 2261 a.u.; PostSit, 3522 ± 1872 a.u.; P = 0.02). In a subset of individuals, we extended the recovery period after sitting and demonstrated that resting shear rate and reactive hyperaemia responses remained low up to 1 h post-sitting (P < 0.001), whereas FMD was unchanged throughout (P = 0.99). Additionally, time control experiments were performed with participants in an immobile supine position, which demonstrated no change in macrovascular function (P = 0.94) but, unexpectedly, a reduction in microvascular function (P = 0.008). Importantly, when calf muscle contractions were performed during supine rest, reactive hyperaemia responses were maintained (P = 0.76), along with FMD (P = 0.88). These findings suggest that the leg microcirculation might be more vulnerable to short periods of inactivity, whereas conduit artery vasodilatation appears well maintained. Moreover, intermittent skeletal muscle contractions are beneficial for microvascular function.


Asunto(s)
Pierna/fisiopatología , Microcirculación/fisiología , Adulto , Velocidad del Flujo Sanguíneo/fisiología , Arteria Braquial/fisiología , Endotelio Vascular/fisiología , Ejercicio Físico/fisiología , Humanos , Hiperemia/fisiopatología , Masculino , Actividad Motora/fisiología , Contracción Muscular/fisiología , Arteria Poplítea/fisiología , Postura/fisiología , Flujo Sanguíneo Regional/fisiología , Estrés Mecánico , Vasodilatación/fisiología , Adulto Joven
15.
Am J Physiol Heart Circ Physiol ; 312(4): H800-H805, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28130340

RESUMEN

Increased daily sitting time is associated with greater cardiovascular risk, and, on average, women are more sedentary than men. Recent reports have demonstrated that prolonged sitting reduces lower leg microvascular (reactive hyperemia) and macrovascular [flow-mediated dilation (FMD)] vasodilator function. However, these studies have predominately included men, and the effects of sitting in young women are largely unexplored. This becomes important given known sex differences in vascular function. Thus, herein, we assessed popliteal artery reactive hyperemia and FMD before and after a 3-h sitting period in healthy young women (n = 12) and men (n = 8). In addition, resting popliteal artery hemodynamics (duplex Doppler ultrasound) and calf circumference were measured before, during, and after sitting. Resting popliteal artery shear rate was reduced to a similar extent in both groups during the sitting period (women: -48.5 ± 8.4 s-1 and men: -52.9 ± 12.3 s-1, P = 0.45). This was accompanied by comparable increases in calf circumference in men and women (P = 0.37). After the sitting period, popliteal artery FMD was significantly reduced in men (PreSit: 5.5 ± 0.9% and PostSit: 1.6 ± 0.4%, P < 0.001) but not women (PreSit: 4.4 ± 0.6% and PostSit: 3.6 ± 0.6%, P = 0.29). In contrast, both groups demonstrated similar reductions in hyperemic blood flow area under the curve (women: -28,860 ± 5,742 arbitrary units and men: -28,691 ± 9,685 arbitrary units, P = 0.99), indicating impaired microvascular reactivity after sitting. These findings indicate that despite comparable reductions in shear rate during 3 h of uninterrupted sitting, macrovascular function appears protected in some young women but the response was variable, whereas men exhibited more consistent reductions in FMD. In contrast, the leg microvasculature is susceptible to similar sitting-induced impairments in men and women.NEW & NOTEWORTHY We demonstrate that leg macrovascular function was consistently reduced in young men but not young women after prolonged sitting. In contrast, both men and women exhibited similar reductions in leg microvascular reactivity after sitting. These data demonstrate, for the first time, sex differences in vascular responses to prolonged sitting.


Asunto(s)
Microcirculación/fisiología , Microvasos/fisiología , Postura/fisiología , Flujo Sanguíneo Regional/fisiología , Femenino , Voluntarios Sanos , Hemodinámica , Humanos , Hiperemia , Pierna/anatomía & histología , Pierna/irrigación sanguínea , Masculino , Arteria Poplítea/diagnóstico por imagen , Arteria Poplítea/fisiología , Caracteres Sexuales , Ultrasonografía Doppler Dúplex , Vasodilatación/fisiología , Adulto Joven
16.
Am J Physiol Heart Circ Physiol ; 312(1): H68-H79, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27769997

RESUMEN

Increases in myocardial oxygen consumption during exercise mainly occur via increases in coronary blood flow (CBF) as cardiac oxygen extraction is high even at rest. However, sympathetic coronary constrictor tone can limit increases in CBF. Increased sympathetic nerve activity (SNA) during exercise likely occurs via the action of and interaction among activation of skeletal muscle afferents, central command, and resetting of the arterial baroreflex. As SNA is heightened even at rest in subjects with hypertension (HTN), we tested whether HTN causes exaggerated coronary vasoconstriction in canines during mild treadmill exercise with muscle metaboreflex activation (MMA; elicited by reducing hindlimb blood flow by ~60%) thereby limiting increases in CBF and ventricular performance. Experiments were repeated after α1-adrenergic blockade (prazosin; 75 µg/kg) and in the same animals following induction of HTN (modified Goldblatt 2K1C model). HTN increased mean arterial pressure from 97.1 ± 2.6 to 132.1 ± 5.6 mmHg at rest and MMA-induced increases in CBF, left ventricular dP/dtmax, and cardiac output were markedly reduced to only 32 ± 13, 26 ± 11, and 28 ± 12% of the changes observed in control. In HTN, α1-adrenergic blockade restored the coronary vasodilation and increased in ventricular function to the levels observed when normotensive. We conclude that exaggerated MMA-induced increases in SNA functionally vasoconstrict the coronary vasculature impairing increases in CBF, which limits oxygen delivery and ventricular performance in HTN. NEW & NOTEWORTHY: We found that metaboreflex-induced increases in coronary blood flow and ventricular contractility are attenuated in hypertension. α1-Adrenergic blockade restored these parameters toward normal levels. These findings indicate that the primary mechanism mediating impaired metaboreflex-induced increases in ventricular function in hypertension is accentuated coronary vasoconstriction.


Asunto(s)
Gasto Cardíaco/fisiología , Circulación Coronaria/fisiología , Vasos Coronarios/fisiopatología , Hipertensión Renovascular/fisiopatología , Condicionamiento Físico Animal , Sistema Nervioso Simpático/fisiopatología , Vasoconstricción/fisiología , Función Ventricular/fisiología , Antagonistas de Receptores Adrenérgicos alfa 1/farmacología , Animales , Presión Arterial , Gasto Cardíaco/efectos de los fármacos , Circulación Coronaria/efectos de los fármacos , Vasos Coronarios/efectos de los fármacos , Perros , Femenino , Miembro Posterior/irrigación sanguínea , Hipertensión/fisiopatología , Músculo Esquelético/irrigación sanguínea , Prazosina/farmacología , Reflejo , Sistema Nervioso Simpático/efectos de los fármacos , Vasoconstricción/efectos de los fármacos , Función Ventricular/efectos de los fármacos
17.
Am J Physiol Regul Integr Comp Physiol ; 313(1): R29-R34, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28490452

RESUMEN

The muscle metaboreflex is a powerful pressor reflex induced by the activation of chemically sensitive muscle afferents as a result of metabolite accumulation. During submaximal dynamic exercise, the rise in arterial pressure is primarily due to increases in cardiac output, since there is little systemic vasoconstriction. Indeed, in normal animals, we have often shown a small, but significant, peripheral vasodilation during metaboreflex activation, which is mediated, at least in part, by release of epinephrine and activation of vascular ß2-receptors. We tested whether this vasodilation is in part due to increased release of nitric oxide caused by the rise in cardiac output eliciting endothelium-dependent flow-mediated vasodilation. The muscle metaboreflex was activated via graded reductions in hindlimb blood flow during mild exercise with and without nitric oxide synthesis blockade [NG-nitro-l-arginine methyl ester (l-NAME); 5 mg/kg]. We assessed the role of increased cardiac output in mediating peripheral vasodilation via the slope of the relationship between the rise in nonischemic vascular conductance (conductance of all vascular beds excluding hindlimbs) vs. the rise in cardiac output. l-NAME increased mean arterial pressure at rest and during exercise. The metaboreflex-induced increases in mean arterial pressure were unaltered by l-NAME, whereas the increases in cardiac output and nonischemic vascular conductance were attenuated. However, the slope of the relationship between nonischemic vascular conductance and cardiac output was not affected by l-NAME, indicating that the rise in cardiac output did not elicit vasodilation via increased release of nitric oxide. Thus, although nitric oxide is intrinsic to the vascular tonus, endothelial-dependent flow-mediated vasodilation plays little role in the small peripheral vasodilation observed during muscle metaboreflex activation.


Asunto(s)
Conductividad Eléctrica , Endotelio Vascular/fisiología , Músculo Esquelético/fisiología , Óxido Nítrico/metabolismo , Reflejo/fisiología , Animales , Perros , Femenino , Masculino
18.
Int J Mol Sci ; 18(8)2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-28767097

RESUMEN

The incidence of chronic kidney disease (CKD) is increasing worldwide, with more than 26 million people suffering from CKD in the United States alone. More patients with CKD die of cardiovascular complications than progress to dialysis. Over 80% of CKD patients have hypertension, which is associated with increased risk of cardiovascular morbidity and mortality. Another common, perhaps underappreciated, feature of CKD is an overactive sympathetic nervous system. This elevation in sympathetic nerve activity (SNA) not only contributes to hypertension but also plays a detrimental role in the progression of CKD independent of any increase in blood pressure. Indeed, high SNA is associated with poor prognosis and increased cardiovascular morbidity and mortality independent of its effect on blood pressure. This brief review will discuss some of the consequences of sympathetic overactivity and highlight some of the potential pathways contributing to chronically elevated SNA in CKD. Mechanisms leading to chronic sympathoexcitation in CKD are complex, multifactorial and to date, not completely understood. Identification of the mechanisms and/or signals leading to sympathetic overactivity in CKD are crucial for development of effective therapeutic targets to reduce the increased cardiovascular risk in this patient group.


Asunto(s)
Hipertensión Renal/fisiopatología , Insuficiencia Renal Crónica/fisiopatología , Sistema Nervioso Simpático/fisiopatología , Animales , Humanos , Hipertensión Renal/mortalidad , Insuficiencia Renal Crónica/mortalidad
19.
Am J Physiol Heart Circ Physiol ; 311(5): H1268-H1276, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27614226

RESUMEN

The muscle metaboreflex and arterial baroreflex regulate arterial pressure through distinct mechanisms. During submaximal exercise muscle metaboreflex activation (MMA) elicits a pressor response virtually solely by increasing cardiac output (CO) while baroreceptor unloading increases mean arterial pressure (MAP) primarily through peripheral vasoconstriction. The interaction between the two reflexes when activated simultaneously has not been well established. We activated the muscle metaboreflex in chronically instrumented canines during dynamic exercise (via graded reductions in hindlimb blood flow; HLBF) followed by simultaneous baroreceptor unloading (via bilateral carotid occlusion; BCO). We hypothesized that simultaneous activation of both reflexes would result in an exacerbated pressor response owing to both an increase in CO and vasoconstriction. We observed that coactivation of muscle metaboreflex and arterial baroreflex resulted in additive interaction although the mechanisms for the pressor response were different. MMA increased MAP via increases in CO, heart rate (HR), and ventricular contractility whereas baroreflex unloading during MMA caused further increases in MAP via a large decrease in nonischemic vascular conductance (NIVC; conductance of all vascular beds except the hindlimb vasculature), indicating substantial peripheral vasoconstriction. Moreover, there was significant vasoconstriction within the ischemic muscle itself during coactivation of the two reflexes but the remaining vasculature vasoconstricted to a greater extent, thereby redirecting blood flow to the ischemic muscle. We conclude that baroreceptor unloading during MMA induces preferential peripheral vasoconstriction to improve blood flow to the ischemic active skeletal muscle.


Asunto(s)
Presión Arterial/fisiología , Barorreflejo/fisiología , Gasto Cardíaco/fisiología , Isquemia/fisiopatología , Músculo Esquelético/irrigación sanguínea , Contracción Miocárdica/fisiología , Flujo Sanguíneo Regional/fisiología , Vasoconstricción/fisiología , Animales , Arterias Carótidas , Perros , Femenino , Frecuencia Cardíaca , Miembro Posterior/irrigación sanguínea , Masculino , Presorreceptores , Reflejo
20.
J Neurooncol ; 126(2): 253-64, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26650066

RESUMEN

Glioblastoma multiforme (GBM) is an aggressive, malignant cancer Johnson and O'Neill (J Neurooncol 107: 359-364, 2012). An extract from the winter cherry plant (Withania somnifera ), AshwaMAX, is concentrated (4.3 %) for Withaferin A; a steroidal lactone that inhibits cancer cells Vanden Berghe et al. (Cancer Epidemiol Biomark Prev 23: 1985-1996, 2014). We hypothesized that AshwaMAX could treat GBM and that bioluminescence imaging (BLI) could track oral therapy in orthotopic murine models of glioblastoma. Human parietal-cortical glioblastoma cells (GBM2, GBM39) were isolated from primary tumors while U87-MG was obtained commercially. GBM2 was transduced with lentiviral vectors that express Green Fluorescent Protein (GFP)/firefly luciferase fusion proteins. Mutational, expression and proliferative status of GBMs were studied. Intracranial xenografts of glioblastomas were grown in the right frontal regions of female, nude mice (n = 3-5 per experiment). Tumor growth was followed through BLI. Neurosphere cultures (U87-MG, GBM2 and GBM39) were inhibited by AshwaMAX at IC50 of 1.4, 0.19 and 0.22 µM equivalent respectively and by Withaferin A with IC50 of 0.31, 0.28 and 0.25 µM respectively. Oral gavage, every other day, of AshwaMAX (40 mg/kg per day) significantly reduced bioluminescence signal (n = 3 mice, p < 0.02, four parameter non-linear regression analysis) in preclinical models. After 30 days of treatment, bioluminescent signal increased suggesting onset of resistance. BLI signal for control, vehicle-treated mice increased and then plateaued. Bioluminescent imaging revealed diffuse growth of GBM2 xenografts. With AshwaMAX, GBM neurospheres collapsed at nanomolar concentrations. Oral treatment studies on murine models confirmed that AshwaMAX is effective against orthotopic GBM. AshwaMAX is thus a promising candidate for future clinical translation in patients with GBM.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Withania/química , Witanólidos/administración & dosificación , Animales , Antineoplásicos/farmacología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Receptores ErbB/metabolismo , Femenino , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Mediciones Luminiscentes , Ratones , Ratones Desnudos , Células-Madre Neurales/efectos de los fármacos , Extractos Vegetales/química , Witanólidos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA