Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Atmos Chem Phys ; 18(15): 11097-11124, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33868395

RESUMEN

The precise contribution of the two major sinks for anthropogenic CO2 emissions, terrestrial vegetation and the ocean, and their location and year-to-year variability are not well understood. Top-down estimates of the spatiotemporal variations in emissions and uptake of CO2 are expected to benefit from the increasing measurement density brought by recent in situ and remote CO2 observations. We uniquely apply a batch Bayesian synthesis inversion at relatively high resolution to in situ surface observations and bias-corrected GOSAT satellite column CO2 retrievals to deduce the global distributions of natural CO2 fluxes during 2009-2010. Our objectives include evaluating bottom-up prior flux estimates, assessing the value added by the satellite data, and examining the impacts of inversion technique and assumptions on posterior fluxes and uncertainties. The GOSAT inversion is generally better constrained than the in situ inversion, with smaller posterior regional flux uncertainties and correlations, because of greater spatial coverage, except over North America and high-latitude ocean. Complementarity of the in situ and GOSAT data enhances uncertainty reductions in a joint inversion; however, spatial and temporal gaps in sampling still limit the ability to accurately resolve fluxes down to the sub-continental scale. The GOSAT inversion produces a shift in the global CO2 sink from the tropics to the north and south relative to the prior, and an increased source in the tropics of ~2 Pg C y-1 relative to the in situ inversion, similar to what is seen in studies using other inversion approaches. This result may be driven by sampling and residual retrieval biases in the GOSAT data, as suggested by significant discrepancies between posterior CO2 distributions and surface in situ and HIPPO mission aircraft data. While the shift in the global sink appears to be a robust feature of the inversions, the partitioning of the sink between land and ocean in the inversions using either in situ or GOSAT data is found to be sensitive to prior uncertainties because of negative correlations in the flux errors. The GOSAT inversion indicates significantly less CO2 uptake in summer of 2010 than in 2009 across northern regions, consistent with the impact of observed severe heat waves and drought. However, observations from an in situ network in Siberia imply that the GOSAT inversion exaggerates the 2010-2009 difference in uptake in that region, while the prior CASA-GFED model of net ecosystem production and fire emissions reasonably estimates that quantity. The prior, in situ posterior, and GOSAT posterior all indicate greater uptake over North America in spring to early summer of 2010 than in 2009, consistent with wetter conditions. The GOSAT inversion does not show the expected impact on fluxes of a 2010 drought in the Amazon; evaluation of posterior mole fractions against local aircraft profiles suggests that time-varying GOSAT coverage can bias estimation of flux interannual variability in this region.

2.
Appl Opt ; 43(4): 914-27, 2004 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-14960086

RESUMEN

The feasibility of making space-based carbon dioxide (CO2) measurements for global and regional carbon-cycle studies is explored. With the proposed detection method, we use absorption of reflected sunlight near 1.58 microm. The results indicate that the small (degrees 1%) changes in CO2 near the Earth's surface are detectable provided that an adequate sensor signal-to-noise ratio and spectral resolution are achievable. Modification of the sunlight path by scattering of aerosols and cirrus clouds could, however, lead to systematic errors in the CO2 column retrieval; therefore ancillary aerosol and cloud data are important to reduce errors. Precise measurement of surface pressure and good knowledge of the atmospheric temperature profile are also required.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA