RESUMEN
Increased levels of proteases, such as trypsin, in the distal intestine have been implicated in intestinal pathological conditions1-3. However, the players and mechanisms that underlie protease regulation in the intestinal lumen have remained unclear. Here we show that Paraprevotella strains isolated from the faecal microbiome of healthy human donors are potent trypsin-degrading commensals. Mechanistically, Paraprevotella recruit trypsin to the bacterial surface through type IX secretion system-dependent polysaccharide-anchoring proteins to promote trypsin autolysis. Paraprevotella colonization protects IgA from trypsin degradation and enhances the effectiveness of oral vaccines against Citrobacter rodentium. Moreover, Paraprevotella colonization inhibits lethal infection with murine hepatitis virus-2, a mouse coronavirus that is dependent on trypsin and trypsin-like proteases for entry into host cells4,5. Consistently, carriage of putative genes involved in trypsin degradation in the gut microbiome was associated with reduced severity of diarrhoea in patients with SARS-CoV-2 infection. Thus, trypsin-degrading commensal colonization may contribute to the maintenance of intestinal homeostasis and protection from pathogen infection.
Asunto(s)
Microbioma Gastrointestinal , Intestino Grueso , Simbiosis , Tripsina , Administración Oral , Animales , Sistemas de Secreción Bacterianos , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/inmunología , Bacteroidetes/aislamiento & purificación , Bacteroidetes/metabolismo , COVID-19/complicaciones , Citrobacter rodentium/inmunología , Diarrea/complicaciones , Heces/microbiología , Microbioma Gastrointestinal/genética , Humanos , Inmunoglobulina A/metabolismo , Intestino Grueso/metabolismo , Intestino Grueso/microbiología , Ratones , Virus de la Hepatitis Murina/metabolismo , Virus de la Hepatitis Murina/patogenicidad , Proteolisis , SARS-CoV-2/patogenicidad , Tripsina/metabolismo , Internalización del VirusRESUMEN
In recent years, there has been a growing demand for low-input proteomics, particularly in the context of single-cell proteomics (SCP). In this study, we have developed a lauryl maltose neopentyl glycol (LMNG)-assisted sample preparation (LASP) method. This method effectively reduces protein and peptide loss in samples by incorporating LMNG, a surfactant, into the digestion solution and subsequently removing the LMNG simply via reversed phase solid-phase extraction. The advantage of removing LMNG during sample preparation for general proteomic analysis is the prevention of mass spectrometry (MS) contamination. When we applied the LASP method to the low-input SP3 method and on-bead digestion in coimmunoprecipitation-MS, we observed a significant improvement in the recovery of the digested peptides. Furthermore, we have established a simple and easy sample preparation method for SCP based on the LASP method and identified a median of 1175 proteins from a single HEK239F cell using liquid chromatography (LC)-MS/MS with a throughput of 80 samples per day.
Asunto(s)
Métodos Analíticos de la Preparación de la Muestra , Glicoles , Maltosa , Proteómica , Análisis de la Célula Individual , Maltosa/química , Glicoles/química , Análisis de la Célula Individual/métodos , Proteómica/métodos , Humanos , Células HEK293 , Cromatografía Líquida con Espectrometría de Masas , InmunoprecipitaciónRESUMEN
BACKGROUND: Clinical studies have demonstrated that IL-4, a type 2 cytokine, plays an important role in the pathogenesis of chronic rhinosinusitis and eosinophilic asthma. However, the direct effect of IL-4 on eosinophils remains unclear. OBJECTIVE: We aimed to elucidate the inflammatory effects of IL-4 on the functions of human eosinophils. METHODS: A multiomics analysis comprising transcriptomics, proteomics, lipidomics, quantitative RT-PCR, and flow cytometry was performed by using blood eosinophils from healthy subjects stimulated with IL-4, IL-5, or a combination thereof. RESULTS: Transcriptomic and proteomic analyses revealed that both IL-4 and IL-5 upregulate the expression of γ-gultamyl transferase 5, a fatty acid-metabolizing enzyme that converts leukotriene C4 into leukotriene D4. In addition, IL-4 specifically upregulates the expression of IL-1 receptor-like 1 (IL1RL1), a receptor for IL-33 and transglutaminase-2. Additional transcriptomic analysis of cells stimulated with IL-13 revealed altered gene expression profiles, characterized by the upregulation of γ-gultamyl transferase 5, transglutaminase-2, and IL1RL1. The IL-13-induced changes were not totally different from the IL-4-induced changes. Lipidomic analysis revealed that IL-5 and IL-4 additively increased the extracellular release of leukotriene D4. In vitro experiments revealed that STAT6 and IL-4 receptor-α control the expression of these molecules in the presence of IL-4 and IL-13. Analysis of eosinophils derived from patients with allergic disorders indicated the involvement of IL-4 and IL-13 at the inflamed sites. CONCLUSIONS: IL-4 induces the proallergic phenotype of IL1RL1high eosinophils, with prominent cysteinyl leukotriene metabolism via STAT6. These cellular changes represent potential therapeutic targets for chronic rhinosinusitis and eosinophilic asthma.
RESUMEN
BACKGROUND: Novel biomarkers (BMs) are urgently needed for bronchial asthma (BA) with various phenotypes and endotypes. OBJECTIVE: We sought to identify novel BMs reflecting tissue pathology from serum extracellular vesicles (EVs). METHODS: We performed data-independent acquisition of serum EVs from 4 healthy controls, 4 noneosinophilic asthma (NEA) patients, and 4 eosinophilic asthma (EA) patients to identify novel BMs for BA. We confirmed EA-specific BMs via data-independent acquisition validation in 61 BA patients and 23 controls. To further validate these findings, we performed data-independent acquisition for 6 patients with chronic rhinosinusitis without nasal polyps and 7 patients with chronic rhinosinusitis with nasal polyps. RESULTS: We identified 3032 proteins, 23 of which exhibited differential expression in EA. Ingenuity pathway analysis revealed that protein signatures from each phenotype reflected disease characteristics. Validation revealed 5 EA-specific BMs, including galectin-10 (Gal10), eosinophil peroxidase, major basic protein, eosinophil-derived neurotoxin, and arachidonate 15-lipoxygenase. The potential of Gal10 in EVs was superior to that of eosinophils in terms of diagnostic capability and detection of airway obstruction. In rhinosinusitis patients, 1752 and 8413 proteins were identified from EVs and tissues, respectively. Among 11 BMs identified in EVs and tissues from patients with chronic rhinosinusitis with nasal polyps, 5 (including Gal10 and eosinophil peroxidase) showed significant correlations between EVs and tissues. Gal10 release from EVs was implicated in eosinophil extracellular trapped cell death in vitro and in vivo. CONCLUSION: Novel BMs such as Gal10 from serum EVs reflect disease pathophysiology in BA and may represent a new target for liquid biopsy approaches.
Asunto(s)
Asma , Biomarcadores , Vesículas Extracelulares , Galectinas , Sinusitis , Humanos , Asma/sangre , Asma/fisiopatología , Asma/inmunología , Asma/diagnóstico , Vesículas Extracelulares/metabolismo , Femenino , Masculino , Galectinas/sangre , Biomarcadores/sangre , Adulto , Persona de Mediana Edad , Sinusitis/sangre , Sinusitis/inmunología , Rinitis/sangre , Rinitis/inmunología , Rinitis/fisiopatología , Pólipos Nasales/inmunología , Pólipos Nasales/sangre , Eosinófilos/inmunología , Anciano , Enfermedad CrónicaRESUMEN
Middle-down proteomics (MDP) is an analytical approach in which protein samples are digested with proteases such as Glu-C to generate large peptides (>3 kDa) that are analyzed by mass spectrometry (MS). This method is useful for characterizing high-molecular-weight proteins that are difficult to detect by top-down proteomics (TDP), in which intact proteins are analyzed by MS. In this study, we applied GeLC-FAIMS-MS, a multidimensional separation workflow that combines gel-based prefractionation with LC-FAIMS MS, for deep MDP. Middle-down peptides generated by optimized limited Glu-C digestion conditions were first size-fractionated by polyacrylamide gel electrophoresis, followed by C4 reversed-phase liquid chromatography separation and additional ion mobility fractionation, resulting in a significant increase in peptide length detectable by MS. In addition to global analysis, the GeLC-FAIMS-MS concept can also be applied to targeted MDP, where only proteins in the desired molecular weight range are gel-fractionated and their Glu-C digestion products are analyzed, as demonstrated by targeted analysis of integrins in exosomes. In-depth MDP achieved by global and targeted GeLC-FAIMS-MS supports the exploration of proteoform information not covered by conventional TDP by increasing the number of detectable protein groups or post-translational modifications (PTMs) and improving the sequence coverage.
Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Proteómica/métodos , Flujo de Trabajo , Péptidos/análisis , Proteínas de Unión al ADNRESUMEN
PURPOSE: Newborn screening using dried blood spot (DBS) samples for the targeted measurement of metabolites and nucleic acids has made a substantial contribution to public healthcare by facilitating the detection of neonates with genetic disorders. Here, we investigated the applicability of non-targeted quantitative proteomics analysis to newborn screening for inborn errors of immunity (IEIs). METHODS: DBS samples from 40 healthy newborns and eight healthy adults were subjected to non-targeted proteomics analysis using liquid chromatography-mass spectrometry after removal of the hydrophilic fraction. Subsequently, DBS samples from 43 IEI patients were analyzed to determine whether patients can be identified by reduced expression of disease-associated proteins. RESULTS: DBS protein profiling allowed monitoring of levels of proteins encoded by 2912 genes, including 1110 listed in the Online Mendelian Inheritance in Man database, in healthy newborn samples, and was useful in identifying patients with IEIs by detecting reduced levels of disease causative proteins and their interacting proteins, as well as cell-phenotypical alterations. CONCLUSION: Our results indicate that non-targeted quantitative protein profiling of DBS samples can be used to identify patients with IEIs and develop a novel newborn screening platform for genetic disorders.
Asunto(s)
Pruebas con Sangre Seca , Tamizaje Neonatal , Proteómica , Humanos , Recién Nacido , Tamizaje Neonatal/métodos , Proteómica/métodos , Pruebas con Sangre Seca/métodos , Masculino , Femenino , Proteoma , Adulto , Cromatografía LiquidaRESUMEN
The fragment molecular orbital (FMO) method is an efficient quantum chemical calculation technique for large biomolecules, dividing each into smaller fragments and providing interfragment interaction energies (IFIEs) that support our understanding of molecular recognition. The ab initio fragment MO method (ABINIT-MP), an FMO processing program, can automatically divide typical proteins and nucleic acids. In contrast, small molecules such as ligands and heterosystems must be manually divided. Thus, we developed a graphical user interface to easily handle such manual fragmentation as a library for the Molecular Operating Environment (MOE) that preprocesses and visualizes FMO calculations. We demonstrated fragmentation with IFIE analyses for the two following cases: (1) covalent cysteine-ligand bonding inside the SARS-CoV-2 main protease (Mpro) and nirmatrelvir (Paxlovid) complex and (2) the metal coordination inside a zinc-bound cyclic peptide. IFIE analysis successfully identified the key amino acid residues for the molecular recognition of nirmatrelvir with Mpro and the details of their interactions (e.g., hydrogen bonds and CH/π interactions) via ligand fragmentation of functional group units. In metalloproteins, we found an efficient and accurate scheme for the fragmentation of Zn2+ ions with four histidines coordinated to the ion. FMOe simplifies manual fragmentation, allowing users to experiment with various fragmentation patterns and perform in-depth IFIE analysis with high accuracy. In the future, our findings will provide valuable insight into complicated cases, such as ligand fragmentation in modality drug discovery, especially for medium-sized molecules and metalloprotein fragmentation around metals.
Asunto(s)
Proteasas 3C de Coronavirus , Metaloproteínas , Ligandos , Metaloproteínas/química , Metaloproteínas/metabolismo , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , SARS-CoV-2 , Teoría Cuántica , Modelos Moleculares , Zinc/química , Cisteína/química , Programas Informáticos , Péptidos Cíclicos/química , COVID-19/virologíaRESUMEN
OBJECTIVE: To investigate the utility of texture analysis in detecting osseous changes associated with hyperparathyroidism on neck CT examinations compared with control patients and to explore the best regions in the head and neck to evaluate changes in the trabecular architecture secondary to hyperparathyroidism. METHODS: Patients with hyperparathyroidism who underwent a 4D CT of the neck with contrast were included in this study. Age-matched control patients with no history of hyperparathyroidism who underwent a contrast-enhanced neck CT were also included. Mandibular condyles, bilateral mandibular bodies, the body of the C4 vertebra, the manubrium of the sternum, and bilateral clavicular heads were selected for analysis, and oval-shaped regions of interest were manually placed. These segmented areas were imported into an in-house developed texture analysis program, and 41 texture analysis features were extracted. A mixed linear regression model was used to compare differences in the texture analysis features contoured at each of the osseous structures between patients with hyperparathyroidism and age-matched control patients. RESULTS: A total of 30 patients with hyperparathyroidism and 30 age-matched control patients were included in this study. Statistically significant differences in texture features between patients with hyperparathyroidism and control patients in all 8 investigated osseous regions. The sternum showed the greatest number of texture features with statistically significant differences between these groups. CONCLUSIONS: Some CT texture features demonstrated statistically significant differences between patients with hyperparathyroidism and control patients. The results suggest that texture features may discriminate changes in the osseous architecture of the head and neck in patients with hyperparathyroidism.
Asunto(s)
Hiperparatiroidismo Primario , Humanos , Hiperparatiroidismo Primario/diagnóstico por imagen , Estudios Retrospectivos , Tomografía Computarizada CuatridimensionalRESUMEN
Serum and plasma exhibit a broad dynamic range of protein concentrations, posing challenges for proteome analysis. Various technologies have been developed to reduce this complexity, including high-abundance depletion methods utilizing antibody columns, extracellular vesicle enrichment techniques, and trace protein enrichment using nanobead cocktails. Here, we employed lectins to address this, thereby extending the scope of biomarker discovery in serum or plasma using a novel approach. We enriched serum proteins using 37 different lectins and subjected them to LC-MS/MS analysis with data-independent acquisition. Solanum tuberosum lectin (STL) and Lycopersicon esculentum lectin (LEL) enabled the detection of more serum proteins than the other lectins. STL and LEL bind to N-acetylglucosamine oligomers, emphasizing the significance of capturing these oligomer-binding proteins when analyzing serum trace proteins. Combining STL and LEL proved more effective than using them separately, allowing us to identify over 3000 proteins from serum through single-shot proteome analysis. We applied the STL/LEL trace-protein enrichment method to the sera of systemic lupus erythematosus model mice. This revealed differences in >1300 proteins between the systemic lupus erythematosus model and control mouse sera, underscoring the utility of this method for biomarker discovery.
Asunto(s)
Lupus Eritematoso Sistémico , Solanum lycopersicum , Solanum tuberosum , Animales , Ratones , Proteoma , Solanum tuberosum/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Lectinas de Plantas/metabolismo , Lectinas/metabolismo , Proteínas Sanguíneas , BiomarcadoresRESUMEN
BACKGROUND: Aspergillus fumigatus is a pathogenic fungus known to be associated with severe asthma and allergic bronchopulmonary mycosis. However, the precise mechanisms underlying airway inflammation remain unclear. In this study, we investigated the direct modulation of human eosinophils by A. fumigatus and identified the specific mechanism of airway inflammation. METHODS: Eosinophils isolated from healthy subjects were stimulated with extracts of A. fumigatus. Multi-omics analysis, comprising transcriptomic and proteomic analyses, was performed. The expression of specific factors was evaluated using quantitative real-time polymerase chain reaction and flow cytometry. Mechanistic analyses were performed using NOD2 inhibitor and N-acetyl-l-cysteine (NAC). RESULTS: The A. fumigatus extract changed the expression of adhesion molecules (CD62L and CD11b) and CD69 on the surface of eosinophils, without affecting their viability, via nucleotide-binding oligomerization domain-containing protein 2 (NOD2) but not protease activity. Investigation using kinase inhibitors showed that A. fumigatus extract-induced modulation was partly mediated via p38 mitogen-activated protein kinases. Multi-omics analysis revealed that A. fumigatus-induced gene and protein expression profiles were characterized by the upregulation of oxidative stress-related molecules, including heat shock proteins (HSP90AA1, HSP90AB1, SRXN1, and HMOX1). NOD2 inhibitor and NAC differentially inhibited A. fumigatus-induced inflammatory changes. Additional multi-omics analysis identified that NOD2 signaling induced gene signatures different from those of interleukin (IL)-5 and elicited synergistic change with IL-5. CONCLUSIONS: A. fumigatus modulates human eosinophils via NOD2 and oxidative stress-mediated signaling. NOD2 signaling potentiated IL-5-induced activation, suggesting its pathogenic role in type 2 inflammation. NOD2 inhibitors and antioxidants can have therapeutic potential against A. fumigatus-related allergic disorders.
RESUMEN
Improving the reproducibility of proteome analysis systems presents a challenge; therefore, in this study, we developed a new insertion spray ionization (InSpIon) system wherein an InSpIon tube was designed with a spray tip inserted into the tube. This system stabilized the spray and subsequently improved the reproducibility of the analysis.
Asunto(s)
Bahías , Espectrometría de Masa por Ionización de Electrospray , Reproducibilidad de los Resultados , Succión , VientoRESUMEN
OBJECTIVES: The clinical symptoms and complications of JDM differ depending on the type of muscle-specific autoantibodies (MSAs) present. We aimed to identify protein expression profiles specific for MSAs that characterize various clinical features by comprehensively analyzing the proteins present in the serum of patients with JDM. METHODS: We analysed sera from patients with JDM that were positive for anti-melanoma differentiation-associated protein 5 (MDA5) antibodies (n = 5), anti-nuclear matrix protein 2 (NXP2) antibodies (n = 5) and anti-transcriptional intermediary factor 1 alpha or gamma subunit (TIF1-γ) antibodies (n = 5), and evaluated healthy controls (n = 5) via single-shot liquid chromatography-tandem mass spectrometry (MS) in data-independent acquisition mode, which is superior for comparative quantitative analysis. We identified different protein groups based on MSAs and performed pathway analysis to understand their characteristics. RESULTS: We detected 2413 proteins from serum MS analysis; 508 proteins were commonly altered in MSAs, including many myogenic enzymes and IFN-regulated proteins. Pathway analysis using the top 50 proteins that were upregulated in each MSA group revealed that the type I IFN and proteasome pathways were significantly upregulated in the anti-MDA5 antibody group alone. CONCLUSION: Although JDM serum contains many proteins commonly altered in MSAs, the pathways associated with clinical features of MSAs differ based on protein accumulation. In-depth serum protein profiles associated with MSAs may be useful for developing therapeutic target molecules and biomarkers.
Asunto(s)
Dermatomiositis , Miositis , Humanos , Autoanticuerpos , Proteómica , Biomarcadores , Músculos/metabolismoRESUMEN
BACKGROUND: Mosquito control is a crucial global issue for protecting the human community from mosquito-borne diseases. There is an urgent need for the development of selective and safe reagents for mosquito control. Flavonoids, a group of chemical substances with variable phenolic structures, such as daidzein, have been suggested as potential mosquito larvicides with less risk to the environment. However, the mode of mosquito larvicidal action of flavonoids has not been elucidated. RESULTS: Here, we report that several flavonoids, including daidzein, inhibit the activity of glutathione S-transferase Noppera-bo (Nobo), an enzyme used for the biosynthesis of the insect steroid hormone ecdysone, in the yellow fever mosquito Aedes aegypti. The crystal structure of the Nobo protein of Ae. aegypti (AeNobo) complexed with the flavonoids and its molecular dynamics simulation revealed that Glu113 forms a hydrogen bond with the flavonoid inhibitors. Consistent with this observation, substitution of Glu113 with Ala drastically reduced the inhibitory activity of the flavonoids against AeNobo. Among the identified flavonoid-type inhibitors, desmethylglycitein (4',6,7-trihydroxyisoflavone) exhibited the highest inhibitory activity in vitro. Moreover, the inhibitory activities of the flavonoids correlated with the larvicidal activity, as desmethylglycitein suppressed Ae. aegypti larval development more efficiently than daidzein. CONCLUSION: Our study demonstrates the mode of action of flavonoids on the Ae. aegypti Nobo protein at the atomic, enzymatic, and organismal levels.
Asunto(s)
Aedes , Animales , Flavonoides , Glutatión Transferasa/metabolismo , Humanos , Larva , Control de MosquitosRESUMEN
Previously, we performed nontargeted proteome analysis using dried blood spots (DBSs) that are widely used in newborn screening for the clinical diagnosis of congenital genetic diseases and immunodeficiency. We have developed an efficient and simple pretreatment method for DBSs that can detect more than 1000 proteins. To complement proteins that are difficult to detect via DBS analysis with less invasive alternative body fluids, we conducted this study to investigate the proteins detected from dried saliva spots (DSSs) using single-shot LC-MS/MS, which is practical in clinical settings. We also clarified whether DSSs have the same advantages as DBSs, and we investigated the influence of saliva collection conditions and the storage environment on their protein profile. As a result, we detected approximately 5000 proteins in DSSs and whole saliva, and we concluded that they were sufficient to complement the proteins lacking in the blood analysis. DSSs could be used as an alternative tool to DBSs for detecting the presence of causative proteins.
Asunto(s)
Proteoma , Espectrometría de Masas en Tándem , Cromatografía Liquida , Pruebas con Sangre Seca/métodos , Humanos , Recién Nacido , SalivaRESUMEN
Proteomics has become an increasingly important tool in medical and medicinal applications. It is necessary to improve the analytical throughput for these applications, particularly in large-scale drug screening to enable measurement of a large number of samples. In this study, we aimed to establish an ultrafast proteomic method based on 5-min gradient LC and quadrupole-Orbitrap mass spectrometer (Q-Orbitrap MS). We precisely optimized data-independent acquisition (DIA) parameters for 5-min gradient LC and reached a depth of >5000 and 4200 proteins from 1000 and 31.25 ng of HEK293T cell digest in a single-shot run, respectively. The throughput of our method enabled the measurement of approximately 80 samples/day, including sample loading, column equilibration, and wash running time. We demonstrated that our method is applicable for the screening of chemical responsivity via a cell stimulation assay. These data show that our method enables the capture of biological alterations in proteomic profiles with high sensitivity, suggesting the possibility of large-scale screening of chemical responsivity.
Asunto(s)
Proteínas , Proteómica , Células HEK293 , Humanos , Espectrometría de Masas/métodos , Proteómica/métodosRESUMEN
The evolution of mass spectrometry (MS) and analytical techniques has led to the demand for proteome analysis with high proteome coverage in single-shot measurements. Focus has been placed on data-independent acquisition (DIA)-MS and ion mobility spectrometry as techniques for deep proteome analysis. We aimed to expand the proteome coverage by single-shot measurements using optimizing high-field asymmetric waveform ion mobility spectrometry parameters in DIA-MS. With our established proteome analysis system, more than 10,000 protein groups were identified from HEK293 cell digests within 120 min of MS measurement time. Additionally, we applied our approach to the analysis of host proteins in mouse feces and detected as many as 892 host protein groups (771 upregulated/121 downregulated proteins) in a mouse model of repeated social defeat stress (R-SDS) used in studying depression. Interestingly, 285 proteins elevated by R-SDS were related to mental disorders. The fecal host protein profiling by deep proteome analysis may help us understand mental illness pathologies noninvasively. Thus, our approach will be helpful for an in-depth comparison of protein expression levels for biological and medical research because it enables the analysis of highly proteome coverage in a single-shot measurement.
Asunto(s)
Espectrometría de Movilidad Iónica , Proteoma , Proteómica , Animales , Heces/química , Células HEK293 , Humanos , Espectrometría de Masas , Ratones , Proteoma/análisis , Proteómica/métodosRESUMEN
Fragment molecular orbital (FMO) method is a powerful computational tool for structure-based drug design, in which protein-ligand interactions can be described by the inter-fragment interaction energy (IFIE) and its pair interaction energy decomposition analysis (PIEDA). Here, we introduced a dynamically averaged (DA) FMO-based approach in which molecular dynamics simulations were used to generate multiple protein-ligand complex structures for FMO calculations. To assess this approach, we examined the correlation between the experimental binding free energies and DA-IFIEs of six CDK2 inhibitors whose net charges are zero. The correlation between the experimental binding free energies and snapshot IFIEs for X-ray crystal structures was R2 = 0.75. Using the DA-IFIEs, the correlation significantly improved to 0.99. When an additional CDK2 inhibitor with net charge of -1 was added, the DA FMO-based scheme with the dispersion energies still achieved R2 = 0.99, whereas R2 decreased to 0.32 employing all the energy terms of PIEDA.
Asunto(s)
Simulación de Dinámica Molecular , Proteínas , Quinasa 2 Dependiente de la Ciclina , Diseño de Fármacos , Ligandos , Unión ProteicaRESUMEN
Highly sensitive protein quantification enables the detection of a small number of protein molecules that serve as markers/triggers for various biological phenomena, such as cancer. Here, we describe the development of a highly sensitive protein quantification system called HaloTag protein barcoding. The method involves covalent linking of a target protein to a unique molecule counting oligonucleotide at a 1:1 conjugation ratio based on an azido-cycloalkyne click reaction. The sensitivity of the HaloTag-based barcoding was remarkably higher than that of a conventional luciferase assay. The HaloTag system was successfully validated by analyzing a set of protein-protein interactions, with the identification rate of 44% protein interactions between positive reference pairs reported in the literature. Desmoglein 3, the target antigen of pemphigus vulgaris, an IgG-mediated autoimmune blistering disease, was used in a HaloTag protein barcode assay to detect the anti-DSG3 antibody. The dynamic range of the assay was over 104-times wider than that of a conventional enzyme-linked immunosorbent assay (ELISA). The technology was used to detect anti-DSG3 antibody in patient samples with much higher sensitivity compared to conventional ELISA. Our detection system, with its superior sensitivity, enables earlier detection of diseases possibly allowing the initiation of care/treatment at an early disease stage.
Asunto(s)
Anticuerpos Antiidiotipos/aislamiento & purificación , Desmogleína 3/aislamiento & purificación , Dominios y Motivos de Interacción de Proteínas/genética , Proteínas/aislamiento & purificación , Anticuerpos Antiidiotipos/genética , Anticuerpos Antiidiotipos/inmunología , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/inmunología , Química Clic , Cicloparafinas/química , Desmogleína 3/genética , Desmogleína 3/inmunología , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Luciferasas/química , Oligonucleótidos , Proteínas/genética , Proteínas/inmunologíaRESUMEN
BACKGROUND: Deficiency of adenosine deaminase 2 (DADA2) is an autosomal recessive inflammatory disease caused by loss-of-function mutations in both alleles of the ADA2 gene. Most patients with DADA2 exhibit systemic vasculopathy consistent with polyarteritis nodosa, but large phenotypic variability has been reported, and the pathogenesis of DADA2 remains unclear. OBJECTIVES: This study sought to assess the clinical and genetic characteristics of Japanese patients with DADA2 and to gain insight into the pathogenesis of DADA2 by multi-omics analysis. METHODS: Clinical and genetic data were collected from 8 Japanese patients with DADA2 diagnosed between 2016 and 2019. ADA2 variants in this cohort were functionally analyzed by in vitro overexpression analysis. PBMCs from 4 patients with DADA2 were subjected to transcriptome and proteome analyses. Patient samples were collected before and after introduction of anti- TNF-α therapies. Transcriptome data were compared with those of normal controls and patients with other autoinflammatory diseases. RESULTS: Five novel ADA2 variants were identified in these 8 patients and were confirmed pathogenic by in vitro analysis. Anti-TNF-α therapy controlled inflammation in all 8 patients. Transcriptome and proteome analyses showed that upregulation of type II interferon signaling was characteristic of DADA2. Network analysis identified STAT1 as a key regulator and a hub molecule in DADA2 pathogenesis, a finding supported by the hyperactivation of STAT1 in patients' monocytes and B cells after IFN-γ stimulation. CONCLUSIONS: Type II interferon signaling and STAT1 are associated with the pathogenesis of DADA2.
Asunto(s)
Adenosina Desaminasa/deficiencia , Agammaglobulinemia/inmunología , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Interferón gamma/inmunología , Leucocitos Mononucleares/inmunología , Factor de Transcripción STAT1/inmunología , Inmunodeficiencia Combinada Grave/inmunología , Adenosina Desaminasa/inmunología , Adolescente , Adulto , Agammaglobulinemia/genética , Agammaglobulinemia/patología , Pueblo Asiatico , Niño , Preescolar , Femenino , Perfilación de la Expresión Génica , Humanos , Lactante , Péptidos y Proteínas de Señalización Intercelular/inmunología , Interferón gamma/genética , Japón , Leucocitos Mononucleares/patología , Masculino , Proteómica , Factor de Transcripción STAT1/genética , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/patologíaRESUMEN
Dried blood spot (DBS) sampling is a method with advantages over conventional blood sampling in relation to collection, cost, storage, and transportation. Such advantages have led to its wide use in newborn screening (NBS). Although target analysis of various biomolecules is conducted in NBS, protein quantification-based NBS is still in its infancy. Thus, it is important to clarify how many proteins could be quantitatively detected in DBS samples using advanced liquid chromatography-mass spectrometry (LC-MS/MS) technologies; a catalogue of proteins detectable in DBSs by LC-MS/MS will enable us to judge which causative proteins in genetic diseases can be monitored at the protein level in NBS. In this review, we outline conventional proteome analyses of DBSs with a distinction between target and nontarget approaches. Additionally, we discuss the future perspectives for proteome analysis of DBSs in NBS of genetic diseases.