RESUMEN
The intimate mechanism of N2O decomposition on bare and redox-tuned Co3O4 nanocubes (achieved by single (Li or K) and double (Li and K) doping) was elucidated. The catalysts synthesized by the hydrothermal method were characterized by X-ray electron absorption fine structure measurements, X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and Kelvin Probe techniques. TPSR and steady-state isothermal catalytic tests reveal that the N2O turnover frequencies are critically sensitive to the work function of the catalysts, adjusted purposely by doping. For the catalysts obtained by one-pot hydrothermal synthesis, lithiation of the Co3O4 nanocubes leads to the formation of {Li'8a, Co·16d} species, decreasing steadily the work function and the activity, while for the catalysts prepared by postsynthesis impregnation, formation of {Li'8a, Co'16d, Co··16c} species leads to a volcano-type dependence of the catalytic activity and the work function in parallel. The beneficial effect of potassium was discussed in terms of mitigation of surface potential buildup due to the accumulation of ionosorbed oxygen intermediates (surface electrostatics), which hinders the interfacial electron transfer. Analysis of the catalytic activity response to the redox tuning of Co3O4, substantiated by DFT calculations, allowed for a straightforward conceptualization of the redox nature of the N2O decomposition in terms of the lineup of frontier orbitals of the N2O/N2O- and O2-/O2 reactants with the surface DOS structure and the resultant molecular orbital interactions. The positions of the virtual bonding 3πg0(N2O)-α-3dz2 and the occupied 2πg1(O2-)-α-3dz2 states relative to the Fermi energy level play a crucial role in the regulation of the forward and backward interfacial electron transfer events, which drive the redox process.
RESUMEN
The investigation of Co oxidation states in pristine LiNixMnyCo1-x-yO2 (NMC) cathodes (NMC111, NMC622, NMC811) has been a subject of ongoing debate, with conflicting findings in the literature. In this study, we present a novel and comprehensive approach to address and clarify this issue using a variety of high energy-resolution X-ray spectroscopy techniques. To shed light on the Co oxidation states in NMC cathodes, we employed independent measurements including X-ray absorption spectrometry in both soft and hard X-ray ranges, as well as resonant X-ray emission spectrometry in the soft X-ray range. The investigation centered on the transition metal (TM) K and L edges, providing a thorough exploration of the electronic structure transitions. The study identified minor shifts in Co oxidation states, and theoretical calculations quantified the ratio of Co atoms undergoing oxidation state changes, which were approximately 2.05% (NMC111 to NMC622) and 3.75% (NMC111 to NMC811). Independent measurements that targeted electronic structure transitions using K-edge and L-edge absorption and emission spectrometry were strategically combined to enhance the reliability of the results. The diverse methodological approach aimed to contribute to a comprehensive understanding of Co oxidation states in NMC cathodes. This study highlights the importance of combining complementary techniques to address intricate scientific debates effectively.
RESUMEN
A methodology based on molecular dynamics simulations is presented to determine the chemical potential of thiol self-assembled monolayers on a gold surface. The thiol de-solvation and then the monolayer formation are described by thermodynamic integration with a gradual decoupling of one molecule from the environment, with the necessary corrections to account for standard state changes. The procedure is applied both to physisorbed undissociated thiol molecules and to chemisorbed dissociated thiyl radicals, considering in the latter case the possible chemical potential of the produced hydrogen. We considered monolayers formed by either 7-mercapto-4-methylcoumarin (MMC) or 3-mercapto-propanoic acid (MPA) on a flat gold surface: the free energy profiles with respect to the monolayer density are consistent with a transition from a very stable lying-down phase at low densities to a standing-up phase at higher densities, as expected. The maximum densities of thermodynamically stable monolayers are compared to experimental measures performed with reference-free grazing-incidence X-ray fluorescence (RF-GIXRF) on the same systems, finding a better agreement in the case of chemisorbed thiyl radicals.
RESUMEN
Carbon nitride materials can be hosts for transition metal sites, but Mössbauer studies on iron complexes in carbon nitrides have always shown a mixture of environments and oxidation states. Here we describe the synthesis and characterization of a crystalline carbon nitride with stoichiometric iron sites that all have the same environment. The material (formula C6N9H2Fe0.4Li1.2Cl, abbreviated PTI/FeCl2) is derived from reacting poly(triazine imide)·LiCl (PTI/LiCl) with a low-melting FeCl2/KCl flux, followed by anaerobic rinsing with methanol. X-ray diffraction, X-ray absorption and Mössbauer spectroscopies, and SQUID magnetometry indicate that there are tetrahedral high-spin iron(II) sites throughout the material, all having the same geometry. The material is active for electrocatalytic nitrate reduction to ammonia, with a production rate of ca. 0.1 mmol cm-2 h-1 and Faradaic efficiency of ca. 80% at -0.80 V vs RHE.
RESUMEN
A reliable and quantitative material analysis is crucial for assessing new technological processes, especially to facilitate a quantitative understanding of advanced material properties at the nanoscale. To this end, X-ray fluorescence microscopy techniques can offer an element-sensitive and non-destructive tool for the investigation of a wide range of nanotechnological materials. Since X-ray radiation provides information depths of up to the microscale, even stratified or buried arrangements are easily accessible without invasive sample preparation. However, in terms of the quantification capabilities, these approaches are usually restricted to a qualitative or semi-quantitative analysis at the nanoscale. Relying on comparable reference nanomaterials is often not straightforward or impossible because the development of innovative nanomaterials has proven to be more fast-paced than any development process for appropriate reference materials. The present work corroborates that a traceable quantification of individual nanoobjects can be realized by means of an X-ray fluorescence microscope when utilizing rather conventional but well-calibrated instrumentation instead of reference materials. As a proof of concept, the total number of atoms forming a germanium nanoobject is quantified using soft X-ray radiation. Furthermore, complementary dimensional parameters of such objects are reconstructed.
RESUMEN
The spatial and compositional complexity of 3D structures employed in today's nanotechnologies has developed to a level at which the requirements for process development and control can no longer fully be met by existing metrology techniques. For instance, buried parts in stratified nanostructures, which are often crucial for device functionality, can only be probed in a destructive manner in few locations as many existing nondestructive techniques only probe the objects surfaces. Here, it is demonstrated that grazing exit X-ray fluorescence can simultaneously characterize an ensemble of regularly ordered nanostructures simultaneously with respect to their dimensional properties and their elemental composition. This technique is nondestructive and compatible to typically sized test fields, allowing the same array of structures to be studied by other techniques. For crucial parameters, the technique provides sub-nm discrimination capabilities and it does not require access-limited large-scale research facilities as it is compatible to laboratory-scale instrumentation.
Asunto(s)
Nanoestructuras , Nanoestructuras/química , NanotecnologíaRESUMEN
Self-assembled monolayers (SAM) of 7-mercapto-4-methylcoumarin (MMC) on a flat gold surface were studied by molecular dynamics (MD) simulations, reference-free grazing incidence X-ray fluorescence (GIXRF) and X-ray photoelectron spectroscopy (XPS), to determine the maximum monolayer density and to investigate the nature of the molecule/surface interface. In particular, the protonation state of the sulfur atom upon adsorption was analyzed, since some recent literature presented evidence for physisorbed thiols (preserving the S-H bond), unlike the common picture of chemisorbed thiyls (losing the hydrogen). MD with a specifically tailored force field was used to simulate either thiol or thiyl monolayers with increasing number of molecules, to determine the maximum dynamically stable densities. This result was refined by computing the monolayer chemical potential as a function of the density with the bennet acceptance ratio method, based again on MD simulations. The monolayer density was also measured with GIXRF, which provided the absolute quantification of the number of sulfur atoms in a dense self-assembled monolayer (SAM) on flat gold surfaces. The sulfur core level binding energies in the same monolayers were measured by XPS, fitting the recorded spectra with the binding energies proposed in the literature for free or adsorbed thiols and thiyls, to get insight on the nature of the molecular species present in the layer. The comparison of theoretical and experimental SAM densities, and the XPS analysis strongly support the picture of a monolayer formed by chemisorbed, dissociated thiyls.
RESUMEN
We present experimental and theoretical X-ray emission spectroscopy (XES) data of the Fe Kß line for Iron(II)sulfide (FeS) and Iron(II)disulfide (FeS2). In comparison to X-ray absorption spectroscopy (XAS), XES offers different discrimination capabilities for chemical speciation, depending on the valence states of the compounds probed and, more importantly in view of a a broader, laboratory-based use, a larger flexibility with respect to the excitation source used. The experimental Fe Kß XES data was measured using polychromatic X-ray radiation and a compact full-cylinder von Hamos spectrometer while the calculations were realized using the OCEAN code. The von Hamos spectrometer used is characterized by an energy window of up to 700 eV and a spectral resolving power of E/ΔE = 800. The large energy window at a single position of the spectrometer components is made profit of to circumvent the instrumental sensitivity of wavelength-dispersive spectrometers to sample positioning. This results in a robust energy scale which is used to compare experimental data with ab initio valence-to-core calculations, which are carried out using the ocean package. To validate the reliability of the ocean package for the two sample systems, near edge X-ray absorption fine structure measurements of the Fe K absorption edge are compared to theory using the same input parameters as in the case of the X-ray emission calculations. Based on the example of iron sulfide compounds, the combination of XES experiments and ocean calculations allows unravelling the electronic structure of different transition metal sulfides and qualifying XES investigations for the speciation of different compounds.
RESUMEN
The increasing importance of well-controlled ordered nanostructures on surfaces represents a challenge for existing metrology techniques. To develop such nanostructures and monitor complex processing constraints fabrication, both a dimensional reconstruction of nanostructures and a characterization (ideally a quantitative characterization) of their composition is required. In this work, we present a soft x-ray fluorescence-based methodology that allows both of these requirements to be addressed at the same time. By applying the grazing-incidence x-ray fluorescence technique and thus utilizing the x-ray standing wave field effect, nanostructures can be investigated with a high sensitivity with respect to their dimensional and compositional characteristics. By varying the incident angles of the exciting radiation, element-sensitive fluorescence radiation is emitted from different regions inside the nanoobjects. By applying an adequate modeling scheme, these datasets can be used to determine the nanostructure characteristics. We demonstrate these capabilities by performing an element-sensitive reconstruction of a lamellar grating made of Si3N4, where GIXRF data for the O-Kα and N-Kα fluorescence emission allows a thin oxide layer to be reconstructed on the surface of the grating structure. In addition, we employ the technique also to three dimensional nanostructures and derive both dimensional and compositional parameters in a quantitative manner.
RESUMEN
A wavefront metrology setup based on the X-ray grating interferometry technique for spatially resolved, quantitative, in situ and at-wavelength measurements of the wavefront at synchrotron radiation and hard X-ray free-electron laser beamlines is reported. Indeed, the ever-increasing demands on the optical components to preserve the wavefront shape and the coherence of the delivered X-ray beam call for more and more sensitive diagnostic instruments. Thanks to its angular sensitivity, X-ray grating interferometry has been established in recent years as an adequate wavefront-sensing technique for quantitatively assessing the quality of the X-ray wavefront under working conditions and hence for the in situ investigation of X-ray optical elements. In order to characterize the optical elements at any given beamline by measuring the aberrations introduced in the wavefront, a transportable X-ray grating interferometry setup was realised at the Swiss Light Source (SLS). The instrument, which is expected to be a valuable tool for investigating the quality of the X-ray beam delivered at an endstation, will be described hereafter in terms of the hardware setup and the related data analysis procedure. Several exemplary experiments performed at the X05DA Optics beamline of the SLS will be presented.
RESUMEN
We present single-shot measurements of the longitudinal photon source position of the SPring-8 Angstrom Compact Free Electron Laser x-ray free electron laser by means of x-ray grating interferometry. The measurements were performed in order to study the behavior of the source under normal operation conditions and as a dependence on the active undulator length. The retrieved experimental results show that x-ray grating interferometry is a powerful in situ monitoring tool for investigating and tuning an x-ray free electron laser.
RESUMEN
Platinum-based drugs are commonly used in cancer treatment. The biological activity of a metallodrug is obviously closely related to its chemical and stereochemical characteristics. An overlooked aspect is the effect of the ligand to the electronic structure of the metal atom (coordinated atom). We report herein a Resonant X-ray Emission Spectroscopy (RXES) study on the chemical speciation of chiral platinum complexes in which diastereomers are distinguished on the basis of their metal electronic configuration. This demonstrates RXES high chemical speciation capabilities, a necessary property to further investigate the reactivity of the Pt atom towards nucleophiles or bionucleophiles, and an important complement the previously reported RXES abilities, namely that it can be employed for in situ studies at physiological concentrations.
Asunto(s)
Antineoplásicos/química , Compuestos Organoplatinos/química , Espectrometría por Rayos X , Flúor/química , Ligandos , EstereoisomerismoRESUMEN
Grazing emission X-ray fluorescence (GEXRF) is well suited for nondestructive elemental-sensitive depth-profiling measurements on samples with nanometer-sized features. By varying the grazing emission angle under which the X-ray fluorescence signal is detected, the probed depth range can be tuned from a few to several hundred nanometers. The dependence of the XRF intensity on the grazing emission angle can be assessed in a sequence of measurements or in a scanning-free approach using a position-sensitive area detector. Hereafter, we will show that the combination of scanning-free GEXRF and fluorescence detected X-ray absorption spectroscopy (XAS) allows for depth-resolved chemical speciation measurements with nanometer-scale accuracy. While the conventional grazing emission geometry is advantageous to minimize self-absorption effects, the use of a scanning-free setup makes the sequential scanning of the grazing emission angles obsolete and paves the way toward time-resolved depth-sensitive XAS measurements. The presented experimental approach was applied to study the surface oxidation of an Fe layer on the top of bulk Si and of a Ge bulk sample. Thanks to the penetrating properties and the insensitivity toward the electric conduction properties of the incident and emitted X-rays, the presented experimental approach is well suited for in situ sample surface studies in the nanometer regime.
RESUMEN
The structure-activity relationships of chiral 1,2-diaminophenylalkane platinum(II) anticancer derivatives are studied, including interactions with telomeric- and genomic-like DNA sequences, the pKa of their diaqua species, structural properties obtained from DFT calculations and resonant X-ray emission spectroscopy. The binding modes of the compounds to telomeric sequences were elucidated, showing no major differences with conventional cis-platinum(II) complexes like cisplatin, supporting that the cis-square planar geometry governs the binding of small Pt(II) complexes to G4 structures. Double-stranded DNA platination kinetics and acid-base constants of the diaqua species of the compounds were measured and compared, highlighting a strong steric dependence of the DNA-binding kinetics, but independent to stereoisomerism. Structural features of the compounds are discussed on the basis of dispersion-corrected DFT, showing that the most active series presents conformers for which the platinum atom is well devoid of steric hindrance. If reactivity indices derived from conceptual DFT do not show evidences for different reactivity between the compounds, RXES experiments provide new insight into the availability of platinum orbitals for binding to nucleophiles.
Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , ADN de Neoplasias/efectos de los fármacos , Hidrocarburos Clorados/farmacología , Compuestos Organoplatinos/química , Compuestos Organoplatinos/farmacología , ADN de Neoplasias/genética , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , G-Cuádruplex/efectos de los fármacos , Humanos , Hidrocarburos Clorados/química , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Estructura Molecular , Teoría Cuántica , Relación Estructura-ActividadRESUMEN
We report on the reactivity of grafted tantalum organometallic catalysts with molecular oxygen. The changes in the local Ta electronic structure were followed by in situ high-energy resolution off-resonant spectroscopy (HEROS). The results revealed agglomeration and formation of Ta dimers, which cannot be reversed. The process occurs independently of starting grafted complex.
RESUMEN
This review presents a new application of Resonant X-ray Emission Spectroscopy (RXES) to study the mechanism of action of metal containing anticancer derivatives and in particular platinum in situ and in vivo. The technique is an example of a photon-in photon-out X-ray spectroscopic approach, which enables chemical speciation of drugs to be determined and therefore to derive action mechanisms, and to determine drug binding rates under physiological conditions and therapeutic concentrations. This is made feasible due to the atomic specificity and high penetration depth of RXES. The review presents examples of the three main types of information that can be obtained by RXES and establishes an experimental protocol to perfect the measurements within cells.
Asunto(s)
Complejos de Coordinación/química , Nanopartículas del Metal/química , Neoplasias/diagnóstico por imagen , Espectrometría por Rayos X/métodos , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/uso terapéutico , Complejos de Coordinación/uso terapéutico , Humanos , Nanopartículas del Metal/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , RadiografíaRESUMEN
The knowledge of the X-ray wavefront is of importance for many experiments at synchrotron sources and hard X-ray free-electron lasers. We will report on metrology measurements performed at the SACLA X-ray Free Electron Laser by means of grating interferometry which allows for an at-wavelength, in-situ, and single-shot characterization of the X-ray wavefront. At SACLA the grating interferometry technique was used for the study of the X-ray optics installed upstream of the end station, two off-set mirror systems and a double crystal monochromator. The excellent quality of the optical components was confirmed by the experimental results. Consequently grating interferometry presents the ability to support further technical progresses in X-ray mirror manufacturing and mounting.
RESUMEN
The electronic structure of nano-NiO was determined using resonant inelastic X-ray scattering (RIXS) spectroscopy. The nanosized NiO particles were reduced in situ, leading to the formation of metallic Ni in a single step. Time-resolved RIXS elucidated in real time the changes on the occupied and unoccupied electronic structure of the material, which are dramatically affected by the reduction process.
RESUMEN
An improvement in the reliability and comparability of tissue characterization results is crucial for enabling further progress in cancer detection and the assessment of therapeutic effects. This can only be achieved by integrating quantitative methods into well-established qualitative characterization routines. This case study presents a hybrid metrological approach for tissue characterisation including vibrational Fourier Transform InfraRed (FTIR) spectroscopy and traceable reference-free X-Ray Fluorescence analysis (XRF). Through the combination of spatially resolved qualitative molecular information with quantitative elemental concentrations an all-encompassing sample characterisation can be provided. The study was performed on tissue sections of syngeneic murine pancreatic ductal adenocarcinoma KPC (KrasG12D/+; Trp53R172H/+; Pdx-1-Cre) tumours ex-vivo. Sections from healthy pancreatic tissues, sham-exposed tumours and tumours subjected to low dose radiotherapy treatment (2 Gray and 6 Gray) were analysed using both methods. Additional sample integrity studies using Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy at the carbon and nitrogen K-edges were performed to assess the effect of sample aging and XRF investigations on the samples. Results showed an increase in the concentrations of elemental biomarkers, including S, K and amide I structures in malignant pancreatic tissue compared to healthy pancreatic tissue. The exposure of tumours to 6 Gy radiation decreases the levels of these elements towards a phenotype seen in the healthy pancreas. A protocol for hybrid investigations is presented, with emphasis on the sample preparation, minimizing the impact of consecutive applied methods on their measurands, and ensuring the compatibility and reliability of achieved results. The study demonstrates the cancer recognition capabilities, and the sensitivity for low dosage radiotherapy treatment monitoring for each method individually and assesses the potential of combining molecular fingerprinting with non-destructive quantitative elemental information for tissue sample characterization.
Asunto(s)
Neoplasias Pancreáticas , Espectrometría por Rayos X , Animales , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/radioterapia , Ratones , Espectrometría por Rayos X/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/diagnóstico por imagenRESUMEN
Deformation of the first crystal of an X-ray monochromator under the heat load of a high-power beam, commonly referred to as `heat bump', is a challenge frequently faced at synchrotron beamlines. Here, quantitative measurements of the deformations of an externally water-cooled silicon (111) double-crystal monochromator tuned to a photon energy of 17.6 keV are reported. These measurements were made using two-dimensional hard X-ray grating interferometry, a technique that enables in situ at-wavelength wavefront investigations with high angular sensitivity. The observed crystal deformations were of the order of 100 nm in the meridional and 5 nm in the sagittal direction, which lead to wavefront slope errors of up to 4 µrad in the meridional and a few hundred nanoradians in the sagittal direction.