Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Cell Int ; 23(1): 48, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927398

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) have been confirmed to play important roles in various cancers including bladder cancer (BC). The precise expression pattern of lncRNA small nucleolar RNA host gene 18 (SNHG18) in BC and its mechanisms of action have not been fully explored. MATERIALS AND METHODS: The expression of SNHG18 was evaluated by RT-qPCR in bladder cancer clinical samples and human bladder cancer cell lines, and stable cell lines overexpressing SNHG18 were constructed. The effect of SNHG18 on the proliferation of bladder cancer cells was detected by soft agar colony formation test, ATP activity test and subcutaneous tumorigenesis model in nude mice. The specific mechanism of SNHG18 inhibition of bladder cancer proliferation was studied by flow cytometry, western blotting, dual luciferase reporter gene assay and protein degradation assay. RESULTS: We found that SNHG18 is significantly downregulated in BC tissues and cell lines. Kaplan-Meier analysis showed that SNHG18 expression is positively correlated with survival in BC patients. Ectopic overexpression of SNHG18 significantly inhibited the proliferation of BC cells in vitro and in vivo. Further mechanistic investigations demonstrated that SNHG18 inhibited c-Myc expression by modulating the ubiquitination-proteasome pathway and that c-Myc is the critical transcription factor that mediates SNHG18 inhibition of BC growth by directly binding to the p21 promoter, which was attributed with significant p21 accumulation. CONCLUSIONS: SNHG18 promotes the transcription and expression of p21 by inhibiting c-Myc expression, leading to G0-G1 arrest and inhibiting the proliferation of bladder cancer cells. These findings highlight a novel cell cycle regulatory mechanism involving the SNHG18/c-Myc/p21 pathway in BC pathogenesis and could potentially lead to new lncRNA-based diagnostics and/or therapeutics for BC.

2.
iScience ; 23(12): 101857, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33344916

RESUMEN

Due to the lack of effective early diagnostic measures and treatment methods, bladder cancer has become a malignant tumor that seriously threatens people's lives and health. Here, we reported that LINC00162, a super-enhancer long noncoding RNA, was highly expressed in bladder cancer cells and tissues. And LINC00162 was negatively correlated with neighboring PTTG1IP expression. Knocking down LINC00162 expression can inhibit the proliferative activity of bladder cancer cells and the growth of transplanted tumors in vivo, while knocking down the expression of PTTG1IP could restore the proliferative activity of bladder cancer cells. In addition, both LINC00162 and PTTG1IP were found to be able to bind to THRAP3, a transcription-related protein. And THRAP3 can regulate PTTG1IP expression. Finally, we demonstrated a mechanism that LINC00162 could regulate PTTG1IP expression through binding THRAP3. This study provided a potential target molecule for clinical treatment of bladder cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA