Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chem Res Toxicol ; 34(6): 1430-1444, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-33881304

RESUMEN

The United States Environmental Protection Agency (EPA) is concerned about the respiratory effects caused by respirable particles of water-insoluble high molecular weight polymers. The EPA has proposed a tiered approach to evaluate polymer lung overload, a kinetic event. Kinetic polymer lung overload in itself is not necessarily adverse, however, inhalation of respirable particulate matter can have adverse effects (i.e., inflammation, fibrosis, etc.). If Tier I testing demonstrates that particles may reach the distal lung (i.e., a non-negligible amount of respirable particles/droplets ≤10 µm in diameter and lack of biosolubility), then animal inhalation testing in Tiers II-IV would be requested. In silico, in chemico, and in vitro alternatives should be considered versus in vivo testing for animal welfare purposes. An in chemico measure of biosolubility was used to demonstrate that a novel α-1,3-glucan polysaccharide, made by enzymatic polymerization of glucose from sucrose, is biosoluble and fits a simple exponential decay model with a half-life on the order of 66 days. The multiple-path particle dosimetry (MPPD) in silico model was used to predict lung burden for the novel α-1,3-glucan polysaccharide. MPPD was validated with measurements in rats exposed to a toner particulate and showed good agreement with lung burden measurements. A simulated 24 month rat exposure yielded 10-20 times less lung burden for the polysaccharide compared to the toner at equivalent exposure concentrations. The MPPD model was refined to include biosolubility data for the polysaccharide polymer. Data for amorphous silica were used to validate the clearance model, and the model incorporating dissolution predicted the amorphous silica lung burden within 20% of measured values. Human equivalent concentrations (HECs) were calculated for each toner rat exposure concentration. HECs were also determined for the polysaccharide at exposure concentrations yielding the same predicted internal doses as the toner. The in vitro, in chemico and in silico studies described here for the novel polysaccharide provide a useful weight of evidence approach in the absence of animal studies for the evaluation of polymer substances where polymer lung overload may be a concern.


Asunto(s)
Pulmón/efectos de los fármacos , Polisacáridos/farmacología , Animales , Conformación de Carbohidratos , Exposición por Inhalación , Tamaño de la Partícula , Polisacáridos/efectos adversos , Polisacáridos/química , Ratas , Ratas Sprague-Dawley , Solubilidad
2.
Biotechnol Biofuels ; 5(1): 38, 2012 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22672858

RESUMEN

BACKGROUND: For cellulosic biofuels processes, suitable characterization of the lignin remaining within the cell wall and correlation of quantified properties of lignin to cell wall polysaccharide enzymatic deconstruction is underrepresented in the literature. This is particularly true for grasses which represent a number of promising bioenergy feedstocks where quantification of grass lignins is particularly problematic due to the high fraction of p-hydroxycinnamates. The main focus of this work is to use grasses with a diverse range of lignin properties, and applying multiple lignin characterization platforms, attempt to correlate the differences in these lignin properties to the susceptibility to alkaline hydrogen peroxide (AHP) pretreatment and subsequent enzymatic deconstruction. RESULTS: We were able to determine that the enzymatic hydrolysis of cellulose to to glucose (i.e. digestibility) of four grasses with relatively diverse lignin phenotypes could be correlated to total lignin content and the content of p-hydroxycinnamates, while S/G ratios did not appear to contribute to the enzymatic digestibility or delignification. The lignins of the brown midrib corn stovers tested were significantly more condensed than a typical commercial corn stover and a significant finding was that pretreatment with alkaline hydrogen peroxide increases the fraction of lignins involved in condensed linkages from 88-95% to ~99% for all the corn stovers tested, which is much more than has been reported in the literature for other pretreatments. This indicates significant scission of ß-O-4 bonds by pretreatment and/or induction of lignin condensation reactions. The S/G ratios in grasses determined by analytical pyrolysis are significantly lower than values obtained using either thioacidolysis or 2DHSQC NMR due to presumed interference by ferulates. CONCLUSIONS: It was found that grass cell wall polysaccharide hydrolysis by cellulolytic enzymes for grasses exhibiting a diversity of lignin structures and compositions could be linked to quantifiable changes in the composition of the cell wall and properties of the lignin including apparent content of the p-hydroxycinnamates while the limitations of S/G estimation in grasses is highlighted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA