Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biology (Basel) ; 10(4)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33919887

RESUMEN

Specimens of a new species of blue diatoms from the genus Haslea Simonsen were discovered in geographically distant sampling sites, first in the Canary Archipelago, then North Carolina, Gulf of Naples, the Croatian South Adriatic Sea, and Turkish coast of the Eastern Mediterranean Sea. An exhaustive characterization of these specimens, using a combined morphological and genomic approach led to the conclusion that they belong to a single new to science cosmopolitan species, Haslea silbo sp. nov. A preliminary characterization of its blue pigment shows similarities to marennine produced by Haslea ostrearia, as evidenced by UV-visible spectrophotometry and Raman spectrometry. Life cycle stages including auxosporulation were also observed, providing data on the cardinal points of this species. For the two most geographically distant populations (North Carolina and East Mediterranean), complete mitochondrial and plastid genomes were sequenced. The mitogenomes of both strains share a rare atp6 pseudogene, but the number, nature, and positions of the group II introns inside its cox1 gene differ between the two populations. There are also two pairs of genes fused in single ORFs. The plastid genomes are characterized by large regions of recombination with plasmid DNA, which are in both cases located between the ycf35 and psbA genes, but whose content differs between the strains. The two sequenced strains hosts three plasmids coding for putative serine recombinase protein whose sequences are compared, and four out of six of these plasmids were highly conserved.

2.
J Biomech Eng ; 132(1): 011005, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20524743

RESUMEN

Mechanical forces play an important role during brain development. In the early embryo, the anterior end of the neural tube enlarges and differentiates into the major brain subdivisions, including three expanding vesicles (forebrain, midbrain, and hindbrain) separated by two constrictions. Once the anterior neuropore and the spinal neurocoel occlude, the brain tube undergoes further regional growth and expansion in response to increasing cerebrospinal fluid pressure. Although this is known to be a response to mechanical loads, the mechanical properties of the developing brain remain largely unknown. In this work, we measured regional opening angles (due to residual stress) and stiffness of the embryonic chick brain during Hamburger-Hamilton stages 11-13 (approximately 42-51 h incubation). Opening angles resulting from a radial cut on transverse brain slices were about 40-110 deg (depending on region and stage) and served as an indicator of circumferential residual stress. In addition, using a custom-made microindentation device and finite-element models, we determined regional indentation stiffness and material properties. The results indicate that the modulus is relatively independent of position and stage of development with the average shear modulus being about 220 Pa for stages 11-13 chick brains. Information on the regional material properties of the early embryonic brain will help illuminate the process of early brain morphogenesis.


Asunto(s)
Encéfalo/embriología , Encéfalo/fisiología , Embrión de Pollo/anatomía & histología , Embrión de Pollo/fisiología , Modelos Neurológicos , Animales , Pollos , Simulación por Computador , Módulo de Elasticidad/fisiología , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA