Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Card Fail ; 27(2): 208-216, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33049374

RESUMEN

BACKGROUND: Patients with heart failure with reduced left ventricular ejection fraction (LVEF) (HFrEF) experience long-term deterioration of autonomic function and cardiac electrical stability linked to increased mortality risk. The Autonomic Neural Regulation Therapy to Enhance Myocardial Function in Heart Failure (ANTHEM-HF) trial reported improved heart rate variability (HRV) and heart rate turbulence (HRT) and reduced T-wave alternans (TWA) after 12 months of vagus nerve stimulation (VNS). We investigated whether the benefits of chronic VNS persist in the long term. METHODS AND RESULTS: Effects of chronic VNS on heart rate, HRV, HRT, TWA, R-wave and T-wave heterogeneity (RWH, TWH), and nonsustained ventricular tachycardia (NSVT) incidence were evaluated in all ANTHEM-HF patients with ambulatory ECG data at 24 and 36 months (n = 25). Autonomic markers improved significantly at 24 and 36 months compared to baseline [heart rate, square root of the mean squared differences of successive normal-to-normal intervals (rMSSD), standard deviation of the normal-to-normal intervals (SDNN), HF-HRV, HRT slope, P < 0.05]. Peak TWA levels remained reduced at 24 and 36 months (P < 0.0001). Reductions in RWH and TWH at 6 and 12 months persisted at 24 and 36 months (P < 0.01). NSVT decreased at 12, 24, and 36 months (P < 0.025). No sudden cardiac deaths, ventricular fibrillation, or sustained ventricular tachycardia occurred. CONCLUSION: In symptomatic patients with HFrEF, chronic VNS appears to confer wide-ranging, persistent improvements in autonomic tone (HRV), baroreceptor sensitivity (HRT), and cardiac electrical stability (TWA, RWH, TWH).


Asunto(s)
Insuficiencia Cardíaca , Estimulación del Nervio Vago , Corazón , Frecuencia Cardíaca , Humanos , Volumen Sistólico , Función Ventricular Izquierda
2.
Clin Auton Res ; 31(3): 453-462, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33590355

RESUMEN

PURPOSE: Disturbed autonomic function is implicated in high mortality rates in heart failure patients. High-intensity vagus nerve stimulation therapy was shown to improve intrinsic heart rate recovery and left ventricular ejection fraction over a period of 1 year. Whether these beneficial effects are sustained across multiple years and are related to improved baroreceptor response was unknown. METHODS: All patients (n = 21) enrolled in the ANTHEM-HF clinical trial (NCT01823887, registered 4/3/2013) with 24 h ambulatory electrocardiograms at all time points and 54 normal subjects (PhysioNet database) were included. Intrinsic heart rate recovery, based on ~ 2000 spontaneous daily activity-induced heart rate acceleration/deceleration events per patient, was analyzed at screening and after 12, 24, and 36 months of chronic vagus nerve stimulation therapy (10 or 5 Hz, 250 µs pulse width, 18% duty cycle, maximum tolerable current amplitude). RESULTS: In response to chronic high-intensity vagus nerve stimulation (≥ 2.0 mA), intrinsic heart rate recovery (all time points, p < 0.0001), heart rate turbulence slope, an indicator of baroreceptor reflex gain (all, p ≤ 0.02), and left ventricular ejection fraction (all, p ≤ 0.04) were improved over screening at 12, 24, and 36 months. Intrinsic heart rate recovery and heart rate turbulence slope were inversely correlated at both screening (r = 0.67, p < 0.002) and 36 months (r = 0.78, p < 0.005). CONCLUSION: This non-randomized study provides evidence of an association between improvement in intrinsic heart rate recovery and left ventricular ejection fraction during high-intensity vagus nerve stimulation for a period of ≥ 3 years. Correlated favorable effects on heart rate turbulence slope implicate enhanced baroreceptor function in response to chronic, continuously cyclic vagus nerve stimulation as a physiologic mechanism.


Asunto(s)
Estimulación del Nervio Vago , Sistema Nervioso Autónomo , Frecuencia Cardíaca , Humanos , Volumen Sistólico , Resultado del Tratamiento , Nervio Vago , Función Ventricular Izquierda
3.
J Physiol ; 595(22): 6887-6903, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28862330

RESUMEN

KEY POINTS: The evoked cardiac response to bipolar cervical vagus nerve stimulation (VNS) reflects a dynamic interaction between afferent mediated decreases in central parasympathetic drive and suppressive effects evoked by direct stimulation of parasympathetic efferent axons to the heart. The neural fulcrum is defined as the operating point, based on frequency-amplitude-pulse width, where a null heart rate response is reproducibly evoked during the on-phase of VNS. Cardiac control, based on the principal of the neural fulcrum, can be elicited from either vagus. Beta-receptor blockade does not alter the tachycardia phase to low intensity VNS, but can increase the bradycardia to higher intensity VNS. While muscarinic cholinergic blockade prevented the VNS-induced bradycardia, clinically relevant doses of ACE inhibitors, beta-blockade and the funny channel blocker ivabradine did not alter the VNS chronotropic response. While there are qualitative differences in VNS heart control between awake and anaesthetized states, the physiological expression of the neural fulcrum is maintained. ABSTRACT: Vagus nerve stimulation (VNS) is an emerging therapy for treatment of chronic heart failure and remains a standard of therapy in patients with treatment-resistant epilepsy. The objective of this work was to characterize heart rate (HR) responses (HRRs) during the active phase of chronic VNS over a wide range of stimulation parameters in order to define optimal protocols for bidirectional bioelectronic control of the heart. In normal canines, bipolar electrodes were chronically implanted on the cervical vagosympathetic trunk bilaterally with anode cephalad to cathode (n = 8, 'cardiac' configuration) or with electrode positions reversed (n = 8, 'epilepsy' configuration). In awake state, HRRs were determined for each combination of pulse frequency (2-20 Hz), intensity (0-3.5 mA) and pulse widths (130-750 µs) over 14 months. At low intensities and higher frequency VNS, HR increased during the VNS active phase owing to afferent modulation of parasympathetic central drive. When functional effects of afferent and efferent fibre activation were balanced, a null HRR was evoked (defined as 'neural fulcrum') during which HRR ≈ 0. As intensity increased further, HR was reduced during the active phase of VNS. While qualitatively similar, VNS delivered in the epilepsy configuration resulted in more pronounced HR acceleration and reduced HR deceleration during VNS. At termination, under anaesthesia, transection of the vagi rostral to the stimulation site eliminated the augmenting response to VNS and enhanced the parasympathetic efferent-mediated suppressing effect on electrical and mechanical function of the heart. In conclusion, VNS activates central then peripheral aspects of the cardiac nervous system. VNS control over cardiac function is maintained during chronic therapy.


Asunto(s)
Frecuencia Cardíaca , Corazón/fisiología , Estimulación del Nervio Vago , Nervio Vago/fisiología , Antagonistas Adrenérgicos beta/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Benzazepinas/farmacología , Perros , Femenino , Corazón/inervación , Ivabradina , Masculino , Antagonistas Muscarínicos/farmacología , Nervio Vago/efectos de los fármacos
4.
Am J Physiol Heart Circ Physiol ; 313(2): H354-H367, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28476920

RESUMEN

Vagus nerve stimulation (VNS) currently treats patients with drug-resistant epilepsy, depression, and heart failure. The mild intensities used in chronic VNS suggest that primary visceral afferents and central nervous system activation are involved. Here, we measured the activity of neurons in the nucleus of the solitary tract (NTS) in anesthetized rats using clinically styled VNS. Our chief findings indicate that VNS at threshold bradycardic intensity activated NTS neuron discharge in one-third of NTS neurons. This VNS directly activated only myelinated vagal afferents projecting to second-order NTS neurons. Most VNS-induced activity in NTS, however, was unsynchronized to vagal stimuli. Thus, VNS activated unsynchronized activity in NTS neurons that were second order to vagal afferent C-fibers as well as higher-order NTS neurons only polysynaptically activated by the vagus. Overall, cardiovascular-sensitive and -insensitive NTS neurons were similarly activated by VNS: 3/4 neurons with monosynaptic vagal A-fiber afferents, 6/42 neurons with monosynaptic vagal C-fiber afferents, and 16/21 polysynaptic NTS neurons. Provocatively, vagal A-fibers indirectly activated C-fiber neurons during VNS. Elevated spontaneous spiking was quantitatively much higher than synchronized activity and extended well into the periods of nonstimulation. Surprisingly, many polysynaptic NTS neurons responded to half the bradycardic intensity used in clinical studies, indicating that a subset of myelinated vagal afferents is sufficient to evoke VNS indirect activation. Our study uncovered a myelinated vagal afferent drive that indirectly activates NTS neurons and thus central pathways beyond NTS and support reconsideration of brain contributions of vagal afferents underpinning of therapeutic impacts.NEW & NOTEWORTHY Acute vagus nerve stimulation elevated activity in neurons located in the medial nucleus of the solitary tract. Such stimuli directly activated only myelinated vagal afferents but indirectly activated a subpopulation of second- and higher-order neurons, suggesting that afferent mechanisms and central neuron activation may be responsible for vagus nerve stimulation efficacy.


Asunto(s)
Potenciales de Acción , Potenciales Evocados , Fibras Nerviosas Mielínicas/fisiología , Fibras Nerviosas Amielínicas/fisiología , Células Receptoras Sensoriales/fisiología , Núcleo Solitario/fisiología , Estimulación del Nervio Vago/métodos , Nervio Vago/fisiología , Animales , Barorreflejo , Presión Sanguínea , Bradicardia/etiología , Bradicardia/fisiopatología , Frecuencia Cardíaca , Masculino , Modelos Animales , Vías Nerviosas/fisiología , Ratas Sprague-Dawley , Estimulación del Nervio Vago/efectos adversos
5.
Artículo en Inglés | MEDLINE | ID: mdl-28213914

RESUMEN

BACKGROUND: Postexercise heart rate recovery (HRR) is a powerful and independent predictor of mortality. Autonomic regulation therapy (ART) with chronic vagus nerve stimulation (VNS) has been shown to improve ventricular function in patients with chronic heart failure. However, the effect of ART on HRR in patients with heart failure remains unknown. METHODS: A new measure involving quantification of intrinsic HRR was developed for 24-hr ambulatory ECG (AECG) recordings based on spontaneous heart rate changes observed during daily activity in patients with symptomatic heart failure and reduced ejection fraction. Intrinsic HRR values were compared in 21 patients enrolled in the ANTHEM-HF study (NCT01823887) before and after 12 months of chronic ART (10 Hz, 250 µs pulse width, 18% duty cycle, maximum tolerable current amplitude after 10 weeks of titration) and to values from normal subjects (PhysioNet database, n = 54). RESULTS: With chronic ART, average intrinsic HRR was improved as indicated by a shortening of the rate-recovery time constant by 8.9% (from 12.3 ± 0.1 at baseline to 11.2 ± 0.1 s, p < .0001) among patients receiving high-intensity stimuli (≥2 mA). In addition, mean heart rate decreased by 8.5 bpm (from 75.9 ± 2.6 to 67.4 ± 2.9 bpm, p = .005) and left ventricular ejection fraction (LVEF) increased by 4.7% (from 32.6 ± 2.0% to 37.3 ± 1.9%, p < .005). CONCLUSION: Using a new technique adapted for 24-hr AECG recordings, intrinsic HRR was found to be impaired in patients with symptomatic HF compared to normal subjects. Chronic ART significantly improved intrinsic HRR, indicating an improvement in autonomic function.


Asunto(s)
Sistema Nervioso Autónomo/fisiopatología , Electrocardiografía Ambulatoria/métodos , Prueba de Esfuerzo/métodos , Insuficiencia Cardíaca/fisiopatología , Frecuencia Cardíaca/fisiología , Estimulación del Nervio Vago/métodos , Adulto , Anciano , Electrocardiografía Ambulatoria/estadística & datos numéricos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
6.
J Electrocardiol ; 50(6): 898-903, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28625397

RESUMEN

BACKGROUND: Optimization of stimulation parameters is essential to maximizing therapeutic efficacy and minimizing side effects. METHODS: The ANTHEM-HF study enrolled patients with heart failure who received chronic autonomic regulation therapy (ART) with an implantable vagus nerve stimulation (VNS) system on either the right (n=30) or left side (n=29). Acute effects of continuously cycling VNS on R-R interval dynamics were evaluated using post hoc Poincaré analysis of ECG recordings collected during multiple titration sessions over an 8-12week period. During each titration session, VNS intensity associated with maximum tolerable dose was determined. Poincaré plots of R-R interval time series were created for epochs when VNS cycled from OFF to ON at varying intensity levels. RESULTS: VNS produced an immediate, relatively small change in beat-to-beat distribution of R-R intervals during the 14-sec ON time, which was correlated with stimulation current amplitude (r=0.85, p=0.05). During titration of right-sided stimulation, there was a strong correlation (r=0.91, p=0.01) between stimulus intensity and the Poincaré parameter of standard deviation, SD1, which is associated with high-frequency heart rate variability. The effect of VNS on instantaneous heart rate was indicated by a shift in the centroid of the beat-to-beat cloud distribution demarcated by the encircling ellipse. As anticipated, left-sided stimulation did not alter any Poincaré parameter except at high stimulation intensities (≥2mA). CONCLUSION: Quantitative Poincaré analysis reveals a tight coupling in beat-to-beat dynamics during VNS ON cycles that is directly related to stimulation intensity, providing a useful measurement for confirming autonomic engagement.


Asunto(s)
Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/terapia , Frecuencia Cardíaca/fisiología , Estimulación del Nervio Vago , Sistema Nervioso Autónomo/fisiopatología , Electrocardiografía , Femenino , Determinación de la Frecuencia Cardíaca , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Resultado del Tratamiento
7.
Am J Physiol Gastrointest Liver Physiol ; 311(4): G754-G762, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27562060

RESUMEN

Altered gut microbial diversity has been associated with several chronic disease states, including heart failure. Stimulation of the vagus nerve, which innervates the heart and abdominal organs, is proving to be an effective therapeutic in heart failure. We hypothesized that cervical vagus nerve stimulation (VNS) could alter fecal flora and prevent aberrations observed in fecal samples from heart failure animals. To determine whether microbial abundances were altered by pressure overload (PO), leading to heart failure and VNS therapy, a VNS pulse generator was implanted with a stimulus lead on either the left or right vagus nerve before creation of PO by aortic constriction. Animals received intermittent, open-loop stimulation or sham treatment, and their heart function was monitored by echocardiography. Left ventricular end-systolic and diastolic volumes, as well as cardiac output, were impaired in PO animals compared with baseline. VNS mitigated these effects. Metagenetic analysis was then performed using 16S rRNA sequencing to identify bacterial genera present in fecal samples. The abundance of 10 genera was significantly altered by PO, 8 of which were mitigated in animals receiving either left- or right-sided VNS. Metatranscriptomics analyses indicate that the abundance of genera that express genes associated with ATP-binding cassette transport and amino sugar/nitrogen metabolism was significantly changed following PO. These gut flora changes were not observed in PO animals subjected to VNS. These data suggest that VNS prevents aberrant gut flora following PO, which could contribute to its beneficial effects in heart failure patients.


Asunto(s)
Heces/microbiología , Corazón/fisiopatología , Estimulación del Nervio Vago , Disfunción Ventricular Izquierda/terapia , Animales , Cobayas , Masculino , Disfunción Ventricular Izquierda/microbiología , Disfunción Ventricular Izquierda/fisiopatología
8.
Am J Physiol Heart Circ Physiol ; 310(10): H1349-59, 2016 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26993230

RESUMEN

Our objective was to determine whether chronic vagus nerve stimulation (VNS) mitigates pressure overload (PO)-induced remodeling of the cardioneural interface. Guinea pigs (n = 48) were randomized to right or left cervical vagus (RCV or LCV) implant. After 2 wk, chronic left ventricular PO was induced by partial (15-20%) aortic constriction. Of the 31 animals surviving PO induction, 10 were randomized to RCV VNS, 9 to LCV VNS, and 12 to sham VNS. VNS was delivered at 20 Hz and 1.14 ± 0.03 mA at a 22% duty cycle. VNS commenced 10 days after PO induction and was maintained for 40 days. Time-matched controls (n = 9) were evaluated concurrently. Echocardiograms were obtained before and 50 days after PO. At termination, intracellular current-clamp recordings of intrinsic cardiac (IC) neurons were studied in vitro to determine effects of therapy on soma characteristics. Ventricular cardiomyocyte sizes were assessed with histology along with immunoblot analysis of selected proteins in myocardial tissue extracts. In sham-treated animals, PO increased cardiac output (34%, P < 0.004), as well as systolic (114%, P < 0.04) and diastolic (49%, P < 0.002) left ventricular volumes, a hemodynamic response prevented by VNS. PO-induced enhancements of IC synaptic efficacy and muscarinic sensitivity of IC neurons were mitigated by chronic VNS. Increased myocyte size, which doubled in PO (P < 0.05), was mitigated by RCV. PO hypertrophic myocardium displayed decreased glycogen synthase (GS) protein levels and accumulation of the phosphorylated (inactive) form of GS. These PO-induced changes in GS were moderated by left VNS. Chronic VNS targets IC neurons accompanying PO to obtund associated adverse cardiomyocyte remodeling.


Asunto(s)
Corazón/inervación , Hipertrofia Ventricular Izquierda/terapia , Estimulación del Nervio Vago , Nervio Vago/fisiopatología , Función Ventricular Izquierda , Presión Ventricular , Remodelación Ventricular , Animales , Apoptosis , Modelos Animales de Enfermedad , Glucógeno Sintasa/metabolismo , Cobayas , Hipertrofia Ventricular Izquierda/etiología , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosforilación , Transmisión Sináptica , Factores de Tiempo
9.
J Cardiovasc Electrophysiol ; 27(9): 1072-7, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27221316

RESUMEN

BACKGROUND: Chronic vagus nerve stimulation (VNS) applied to produce biomimetic levels of parasympathetic activation is feasible, well tolerated, safe, improves left ventricular ejection fraction, NYHA class, heart rate variability, and baroreflex function, and reduces T-wave alternans (TWA) in patients with chronic heart failure. However, the acute effects of VNS on beat-to-beat heart rate dynamics have not been systematically characterized in humans. METHODS AND RESULTS: We evaluated acute effects of VNS on R-R-interval dynamics during the VNS titration period in patients (n = 59) enrolled in ANTHEM-HF trial by quantifying effects during continuous cyclic VNS (14-seconds on-time, 66-seconds off-time) adjusted to the maximum tolerable dose without excessive (<4 bpm) bradycardia during the 10-week titration period. VNS elicited an immediate change in heart rate that was correlated to VNS current amplitude, pulse width, and frequency. Heart rate decreased more in the 28 patients with right-sided stimulation (-2.22 ± 0.13 bpm) than in the 31 patients with left-sided stimulation (-0.60 ± 0.08 bpm, P < 0.001). The linear correlation between stimulus intensity and lengthening of the R-R interval was stronger among the 28 patients with right-sided VNS implantation (r = 0.88, P < 0.0001) than among the 31 patients with left-sided VNS implantation (r = 0.49, P < 0.002). In all patients, the heart rate change elicited by VNS was significantly greater than the change during the same timing intervals in 10 randomly selected patients without stimulation (+0.08 ± 0.06 bpm, P < 0.001). CONCLUSION: Instantaneous heart rate change during therapeutic levels of VNS in patients with heart failure indicates consistent modulation of the autonomic nervous system for both left- and right-sided stimulation.


Asunto(s)
Sistema Nervioso Autónomo/fisiopatología , Insuficiencia Cardíaca/terapia , Frecuencia Cardíaca , Corazón/inervación , Estimulación del Nervio Vago , Potenciales de Acción , Adulto , Electrocardiografía , Técnicas Electrofisiológicas Cardíacas , Femenino , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Factores de Tiempo , Resultado del Tratamiento , Estimulación del Nervio Vago/métodos
10.
J Card Fail ; 22(8): 639-42, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26576716

RESUMEN

OBJECTIVE: Evaluate the effects of a novel autonomic regulation therapy (ART) via vagus nerve stimulation (VNS) in patients with chronic heart failure (HF) and reduced left ventricular ejection fraction during a 12-month follow-up period. METHODS: The Autonomic Regulation Therapy for the Improvement of Left Ventricular Function and Heart Failure Symptoms (ANTHEM-HF) study enrolled 60 subjects with New York Heart Association class II-III HF and low left ventricular ejection fraction (≤40%), who received open-loop ART using VNS randomized to left or right cervical vagus nerve placement and followed for 6 months after titration to a therapeutic output current (2.0 ± 0.6 mA). Patients received chronic stimulation at a frequency of 10 Hz and pulse duration of 250 µsec. Forty-nine subjects consented to participate in an extended follow-up study for an additional 6 months (12 months total posttitration) to determine whether the effects of therapy were maintained. RESULTS: During the 6-month extended follow-up period, there were no device malfunctions or device-related serious adverse effects. There were 7 serious adverse effects unrelated to the device, including 3 deaths (2 sudden cardiac deaths, 1 worsening HF death). There were 5 nonserious adverse events that were adjudicated to be device-related. Safety and tolerability were similar, and there were no significant differences in efficacy between left- and right-sided ART. Overall, mean efficacy measure values at 12 months were not significantly different from mean values at 6 months. CONCLUSIONS: Chronic open-loop ART via left- or right-sided VNS continued to be feasible and well-tolerated in patients with HF with reduced EF. Improvements in cardiac function and HF symptoms seen after 6 months of ART were maintained at 12 months.


Asunto(s)
Sistema Nervioso Autónomo/fisiopatología , Insuficiencia Cardíaca/terapia , Volumen Sistólico/fisiología , Estimulación del Nervio Vago/métodos , Función Ventricular Izquierda/fisiología , Remodelación Ventricular , Femenino , Estudios de Seguimiento , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Factores de Tiempo , Resultado del Tratamiento
11.
Am J Physiol Heart Circ Physiol ; 309(10): H1740-52, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26371171

RESUMEN

Using vagus nerve stimulation (VNS), we sought to determine the contribution of vagal afferents to efferent control of cardiac function. In anesthetized dogs, the right and left cervical vagosympathetic trunks were stimulated in the intact state, following ipsilateral or contralateral vagus nerve transection (VNTx), and then following bilateral VNTx. Stimulations were performed at currents from 0.25 to 4.0 mA, frequencies from 2 to 30 Hz, and a 500-µs pulse width. Right or left VNS evoked significantly greater current- and frequency-dependent suppression of chronotropic, inotropic, and lusitropic function subsequent to sequential VNTx. Bradycardia threshold was defined as the current first required for a 5% decrease in heart rate. The threshold for the right vs. left vagus-induced bradycardia in the intact state (2.91 ± 0.18 and 3.47 ± 0.20 mA, respectively) decreased significantly with right VNTx (1.69 ± 0.17 mA for right and 3.04 ± 0.27 mA for left) and decreased further following bilateral VNTx (1.29 ± 0.16 mA for right and 1.74 ± 0.19 mA for left). Similar effects were observed following left VNTx. The thresholds for afferent-mediated effects on cardiac parameters were 0.62 ± 0.04 and 0.65 ± 0.06 mA with right and left VNS, respectively, and were reflected primarily as augmentation. Afferent-mediated tachycardias were maintained following ß-blockade but were eliminated by VNTx. The increased effectiveness and decrease in bradycardia threshold with sequential VNTx suggest that 1) vagal afferents inhibit centrally mediated parasympathetic efferent outflow and 2) the ipsilateral and contralateral vagi exert a substantial buffering capacity. The intact threshold reflects the interaction between multiple levels of the cardiac neural hierarchy.


Asunto(s)
Vías Aferentes/fisiología , Vías Eferentes/fisiología , Frecuencia Cardíaca/fisiología , Corazón/inervación , Sistema Nervioso Parasimpático/fisiología , Sistema Nervioso Simpático/fisiología , Estimulación del Nervio Vago , Nervio Vago/fisiología , Animales , Bradicardia/fisiopatología , Perros , Femenino , Masculino , Taquicardia/fisiopatología
12.
Am J Physiol Heart Circ Physiol ; 309(7): H1198-206, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26276818

RESUMEN

This paper aims to determine whether chronic vagus nerve stimulation (VNS) mitigates myocardial infarction (MI)-induced remodeling of the intrinsic cardiac nervous system (ICNS), along with the cardiac tissue it regulates. Guinea pigs underwent VNS implantation on the right cervical vagus. Two weeks later, MI was produced by ligating the ventral descending coronary artery. VNS stimulation started 7 days post-MI (20 Hz, 0.9 ± 0.2 mA, 14 s on, 48 s off; VNS-MI, n = 7) and was compared with time-matched MI animals with sham VNS (MI n = 7) vs. untreated controls (n = 8). Echocardiograms were performed before and at 90 days post-MI. At termination, IC neuronal intracellular voltage recordings were obtained from whole-mount neuronal plexuses. MI increased left ventricular end systolic volume (LVESV) 30% (P = 0.027) and reduced LV ejection fraction (LVEF) 6.5% (P < 0.001) at 90 days post-MI compared with baseline. In the VNS-MI group, LVESV and LVEF did not differ from baseline. IC neurons showed depolarization of resting membrane potentials and increased input resistance in MI compared with VNS-MI and sham controls (P < 0.05). Neuronal excitability and sensitivity to norepinephrine increased in MI and VNS-MI groups compared with controls (P < 0.05). Synaptic efficacy, as determined by evoked responses to stimulating input axons, was reduced in VNS-MI compared with MI or controls (P < 0.05). VNS induced changes in myocytes, consistent with enhanced glycogenolysis, and blunted the MI-induced increase in the proapoptotic Bcl-2-associated X protein (P < 0.05). VNS mitigates MI-induced remodeling of the ICNS, correspondingly preserving ventricular function via both neural and cardiomyocyte-dependent actions.


Asunto(s)
Sistema Nervioso Autónomo/fisiopatología , Corazón/inervación , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/metabolismo , Plasticidad Neuronal/fisiología , Estimulación del Nervio Vago , Disfunción Ventricular Izquierda/fisiopatología , Animales , Potenciales Evocados , Glucogenólisis , Cobayas , Potenciales de la Membrana , Norepinefrina/metabolismo , Volumen Sistólico/fisiología , Transmisión Sináptica , Función Ventricular Izquierda , Proteína X Asociada a bcl-2/metabolismo
13.
J Card Fail ; 20(11): 808-16, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25187002

RESUMEN

OBJECTIVE: ANTHEM-HF evaluated a novel autonomic regulation therapy (ART) via either left or right vagus nerve stimulation (VNS) in patients with heart failure (HF) and reduced ejection fraction (HFrEF). METHODS AND RESULTS: Sixty subjects (New York Heart Association [NYHA] functional class II-III, left ventricular ejection fraction (LVEF) ≤ 40%, left ventricular end-diastolic diameter ≥ 50 mm to < 80 mm) receiving optimal pharmacologic therapy were randomized at 10 sites. VNS systems were randomly implanted on the left (n = 31) or right (n = 29) side. All patients were successfully implanted and 59 were titrated over 10 weeks to a well tolerated stimulation intensity. One patient died 3 days after an embolic stroke that occurred during implantation. Common device-related adverse events after VNS titration were transient mild dysphonia, cough, and oropharyngeal pain, which were similar for left- and right-side VNS. After 6 months of ART, the adjusted left-right differences in LVEF, left ventricular end-systolic volume (LVESV), and left ventricular end-systolic diameter (LVESD) were 0.2% (95% CI -4.4 to 4.7), 3.7 mL (95% CI -7.0 to 14.4), and 1.3 mm (95% CI -0.9 to 3.6), respectively. In the combined population, absolute LVEF improved by 4.5% (95% CI 2.4-6.6), LVESV improved by -4.1 mL (95% CI -9.0 to 0.8), and LVESD improved by -1.7 mm (95% CI -2.8 to -0.7). Heart rate variability improved by 17 ms (95% CI 6.5-28) with minimal left-right difference. Six-minute walk distance improved an average of 56 m (95% CI 37-75); however, improvement was greater for right-side ART (77 m [95% CI 49-105]). NYHA functional class improved in 77% of patients (baseline to 6 months). CONCLUSIONS: Chronic open-loop ART via left- or right-side VNS is feasible and well tolerated in HFrEF patients. Safety and efficacy measures are encouraging and warrant further study.


Asunto(s)
Sistema Nervioso Autónomo/fisiopatología , Insuficiencia Cardíaca/terapia , Estimulación del Nervio Vago/métodos , Función Ventricular Izquierda/fisiología , Remodelación Ventricular , Anciano , Estudios de Factibilidad , Femenino , Estudios de Seguimiento , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Volumen Sistólico/fisiología , Factores de Tiempo , Resultado del Tratamiento
14.
J Card Fail ; 19(9): 655-60, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24054343

RESUMEN

BACKGROUND: Outcomes of heart failure (HF) have improved dramatically with the use of blockers of the sympathetic and renin-angiotensin-aldosterone systems, as well as with more prevalent use of implantable cardiac defibrillators and cardiac resynchronization therapy. Despite these interventions, however, the overall prognosis of HF patients remains poor. Recently, stimulation of the right cervical vagus nerve in patients with symptomatic heart failure has been evaluated. Results suggest that vagal nerve stimulation provides sustained improvement in left ventricular (LV) function and symptoms associated with HF. However, much remains to be learned about the risks and benefits of therapies that alter autonomic regulatory function for the treatment of heart failure. METHODS: The Autonomic Neural Regulation Therapy to Enhance Myocardial Function in Heart Failure (ANTHEM-HF) study has been designed to address several key clinical questions about the role of autonomic regulation therapy (ART) in patients with LV dysfunction and chronic symptomatic heart failure. CONCLUSIONS: ANTHEM-HF should provide additional and valuable information regarding the safety and the relationship between the site and intensity of ART and its salutary effects on HF.


Asunto(s)
Sistema Nervioso Autónomo , Desfibriladores Implantables , Insuficiencia Cardíaca/terapia , Estimulación del Nervio Vago/métodos , Disfunción Ventricular Izquierda/terapia , Sistema Nervioso Autónomo/fisiología , Terapia de Resincronización Cardíaca/métodos , Estudios de Factibilidad , Insuficiencia Cardíaca/fisiopatología , Humanos , Resultado del Tratamiento , Estimulación del Nervio Vago/instrumentación , Disfunción Ventricular Izquierda/fisiopatología
15.
Int J Cardiol ; 381: 37-44, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36934987

RESUMEN

BACKGROUND: Autonomic regulation therapy (ART) utilizing cervical vagus nerve stimulation (VNS) appeared to be safe and to improve autonomic tone, symptoms, and cardiac mechanical function in patients with symptomatic heart failure and reduced ejection fraction in the ANTHEM-HF Study. The ANTHEM-HFpEF Study is the first investigation to evaluate the safety and feasibility of ART in patients with symptomatic heart failure and preserved or mildly reduced ejection fraction (HFpEF, HFmrEF). METHODS: This open-label interventional study enrolled 52 patients with HFpEF or HFmrEF, NYHA Class II-III, and LVEF ≥40%, who received stable guideline-directed medical therapy. All patients were successfully implanted with LivaNova VNS Therapy® system with an electrical lead surrounding the right cervical vagus nerve. RESULTS: Adverse event incidence was low. At 12 months, NYHA class (p <0.0001), 6-min walk distance (p <0.05), and quality of life (p <0.0001) were improved. Cardiac mechanical function measures were normal at baseline, except for left ventricular mass index in women and E/e' ratio in all patients, which were elevated at baseline, and were unchanged by ART. Autonomic tone and reflexes improved, indicated by 29% decrease in low-frequency/high-frequency heart rate variability to normal levels (p = 0.028) and by increased heart rate turbulence slope (p = 0.047). T-wave alternans (p = 0.001) and T-wave heterogeneity (p = 0.001) were reduced from abnormal to normal ranges. Nonsustained ventricular tachycardia incidence decreased (p = 0.027). CONCLUSIONS: ART appeared well-tolerated and safe in patients with HFpEF or HFmrEF. Chronic ART did not alter mechanical function measures but was associated with improved heart failure symptoms, exercise tolerance, autonomic tone, and cardiac electrical stability. CLINICAL TRIAL REGISTRY: Autonomic Neural Regulation Therapy to Enhance Myocardial Function in Heart Failure with Preserved Ejection Fraction [ClinicalTrials.gov #NCT03163030, registered 05/22/2017].


Asunto(s)
Cardiopatías , Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Femenino , Humanos , Arritmias Cardíacas , Enfermedad Crónica , Corazón , Insuficiencia Cardíaca/terapia , Insuficiencia Cardíaca/tratamiento farmacológico , Pronóstico , Calidad de Vida , Volumen Sistólico/fisiología , Resultado del Tratamiento , Función Ventricular Izquierda/fisiología
16.
Front Physiol ; 13: 855756, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35431984

RESUMEN

Heart failure with reduced left ventricular ejection fraction is a progressive disease that claims > 352,000 lives annually in the United States alone. Despite the development of an extensive array of pharmacologic and device therapies, prognosis remains poor. Disruption in autonomic balance in the form of heightened sympathetic nerve activity and reduced vagal tone have been established as major causes of heart failure progression. Interest in chronic neuromodulation mediated by vagus nerve stimulation (VNS) has intensified in recent years. This review focuses on four main goals: (1) To review the preclinical evidence that supports the concept of a cardioprotective effect of VNS on autonomic function and cardiac electrical stability along with the underlying putative mechanisms. (2) To present the initial clinical experience with chronic VNS in patients with heart failure and highlight the controversial aspects of the findings. (3) To discuss the latest findings of the multifactorial effects of VNS on autonomic tone, baroreceptor sensitivity, and cardiac electrical stability and the state-of-the-art methods employed to monitor these relationships. (4) To discuss the implications of the current findings and the gaps in knowledge that require attention in future investigations.

17.
J Interv Card Electrophysiol ; 63(3): 555-560, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34467496

RESUMEN

PURPOSE: Autonomic regulation therapy (ART) for heart failure (HF) is delivered using vagus nerve stimulation (VNS), and has been associated with improvement in cardiac function and HF symptoms. VNS is delivered using an implantable pulse generator (IPG) and a lead placed around the cervical vagus nerve. Because HF patients may receive concomitant cardiac defibrillation therapy, testing was conducted to determine the effect of defibrillation (DF) on VNS system performance. METHODS: Normal swine (n = 4) with VNS system implants on the right cervical vagus nerve received sequential defibrillation shocks with three defibrillation systems: an implantable cardioverter defibrillator (ICD), a subcutaneous ICD (S-ICD), and an external cardioverter defibrillator (ECD). Each system delivered a series of bipolar high-energy shocks and reverse-polarity high-energy shocks. RESULTS: The specified cardiac defibrillation shocks were delivered successfully from each of the three defibrillation systems to all animals. After each shock series, interrogation of the IPG confirmed that software and data were unchanged from pre-programmed values. After all of the defibrillation shocks were delivered, the IPGs underwent and passed comprehensive electrical testing demonstrating proper system function. No shifts in IPG parameters or ART system failures were observed, and histologic evaluation of the vagus nerve revealed no anatomic changes. CONCLUSIONS: Implantable VNS systems were tested in vivo for immunity to defibrillation via ICD, S-ICD, and ECD, and were found to be unaffected by a series of high-energy defibrillation shocks. These results confirm that ART systems are capable of continuing to function after defibrillation and the cervical vagus nerve is anatomically unaffected.


Asunto(s)
Desfibriladores Implantables , Insuficiencia Cardíaca , Estimulación del Nervio Vago , Animales , Antiarrítmicos , Desfibriladores Implantables/efectos adversos , Cardioversión Eléctrica/métodos , Electrocardiografía , Insuficiencia Cardíaca/terapia , Humanos , Porcinos
18.
Front Physiol ; 13: 853617, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360224

RESUMEN

Introduction: Although heart failure (HF) outcomes have improved dramatically with the use of guideline directed medical therapy and implantable devices, the overall prognosis of patients with HF and reduced ejection fraction (HFrEF) remains poor. Autonomic Regulation Therapy (ART) using chronic vagus nerve stimulation (VNS) has been evaluated in the ANTHEM-HF study, using changes in heart rate (HR) dynamics as a biomarker of autonomic nervous system engagement and cardiac control to guide VNS titration. ART was associated with sustained improvement in cardiac function and HF symptoms in patients with HFrEF and persistent HF symptoms despite guideline-directed medical therapy (GDMT). We sought to determine whether the responsiveness of the autonomic nervous system to ART, as reflected in HR response to vagus stimulation during the VNS duty cycle, is maintained after long-term chronic VNS administration. Methods: Fifteen patients with HFrEF and implanted with a VNS systems in the ANTHEM-HF study were evaluated after 4.7 ± 0.3 years (range: 4.0-5.0 years) of chronic ART. ECG electrodes were placed on each patient's wrists, and ECG rhythm strips were recorded. Instantaneous HR time series was computed at each patient's chronically programmed VNS intensity and during progressively increasing VNS intensity. HR during active stimulation (on-time) was compared to HR just prior to initiation of each stimulation cycle (off-time). Results: Persistent autonomic engagement was observed in a majority of patients (11 of 15, 73%) after chronic ART for four or more years. The average magnitude of HR reduction during ART on-time in all patients was 2.4 ± 3.2 bpm at the chronically programmed VNS pulse parameter settings. Conclusion: Autonomic responsiveness to VNS persists in patients with HFrEF who received chronic ART for up to 5 years as a supplement to GDMT. This suggests that the effects of ART on autonomic engagement and cardiac control remain durable over time. Clinical Trial Registration: [ClinicalTrials.gov], identifier [#NCT01823887, CTRI registration #CTRI/2012/05/002681].

19.
Bioelectron Med ; 7(1): 3, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33722304

RESUMEN

BACKGROUND: Vagus Nerve Stimulation (VNS) delivers Autonomic Regulation Therapy (ART) for heart failure (HF), and has been associated with improvement in cardiac function and heart failure symptoms. VNS is delivered using an implantable pulse generator (IPG) and lead with electrodes placed around the cervical vagus nerve. Because HF patients may receive concomitant cardiac defibrillation therapy, testing was conducted to determine the effect of defibrillation (DF) on the VNS system. METHODS: DF testing was conducted on three ART IPGs (LivaNova USA, Inc.) according to international standard ISO14708-1, which evaluated whether DF had any permanent effects on the system. Each IPG was connected to a defibrillation pulse generator and subjected to a series of high-energy pulses. RESULTS: The specified series of pulses were successfully delivered to each of the three devices. All three IPGs passed factory electrical tests, and interrogation confirmed that software and data were unchanged from the pre-programmed values. No shifts in parameters or failures were observed. CONCLUSIONS: Implantable VNS systems were tested for immunity to defibrillation, and were found to be unaffected by a series of high-energy defibrillation pulses. These results suggest that this VNS system can be used safely and continue to function after patients have been defibrillated.

20.
Int J Cardiol ; 323: 175-178, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33038408

RESUMEN

BACKGROUND: The ANTHEM-HF pilot study was an open-label study that evaluated the safety and feasibility of autonomic regulation therapy (ART) utilizing cervical vagus nerve stimulation (VNS) for patients with chronic HF with reduced EF (HFrEF). Patients in NYHA class II-III with EF ≤40% (n = 60) received ART for 6 months post-titration. ART was associated with sustained improvement in left ventricular (LV) function and HF symptoms at 6 and 12 months. METHODS: Continuously cyclic VNS was maintained to determine longer-term safety and chronic effects of ART. Echocardiographic parameters and HF symptoms were assessed throughout a follow-up period of at least 42 months. RESULTS: Between 12 and 42 months after initial titration, there were no device-related SAEs or malfunctions. There were 10 SAEs adjudicated to be unrelated to VNS, including 5 deaths. There were 6 non-serious adverse events that were adjudicated to be device-related (2 oropharyngeal pain, 1 implant site pain, 2 voice alteration, and 1 hoarseness). At 42 months, there was significant improvement from baseline in LVEF, NYHA class, 6-min walk distance, and MLHFQ score. However, these improvements at 42 months were not significantly different from mean values at 6 and 12 months. CONCLUSIONS: In a 42-month follow-up, ART was durable, safe, and was associated with beneficial effects on LVEF and 6-min walk distance. Long term, chronic, open-loop ART continued to be well-tolerated in patients with HFrEF. The open label, randomized, controlled, ANTHEM-HFrEF Pivotal Study is currently underway to further evaluate ART in patients with advanced HF.


Asunto(s)
Insuficiencia Cardíaca , Estudios de Seguimiento , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/terapia , Humanos , Proyectos Piloto , Volumen Sistólico , Resultado del Tratamiento , Función Ventricular Izquierda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA