Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Am J Hum Genet ; 111(3): 509-528, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38412861

RESUMEN

Neurodevelopmental disorders (NDDs) result from impaired development and functioning of the brain. Here, we identify loss-of-function (LoF) variation in ZFHX3 as a cause for syndromic intellectual disability (ID). ZFHX3 is a zinc-finger homeodomain transcription factor involved in various biological processes, including cell differentiation and tumorigenesis. We describe 42 individuals with protein-truncating variants (PTVs) or (partial) deletions of ZFHX3, exhibiting variable intellectual disability and autism spectrum disorder, recurrent facial features, relative short stature, brachydactyly, and, rarely, cleft palate. ZFHX3 LoF associates with a specific methylation profile in whole blood extracted DNA. Nuclear abundance of ZFHX3 increases during human brain development and neuronal differentiation. ZFHX3 was found to interact with the chromatin remodeling BRG1/Brm-associated factor complex and the cleavage and polyadenylation complex, suggesting a function in chromatin remodeling and mRNA processing. Furthermore, ChIP-seq for ZFHX3 revealed that it predominantly binds promoters of genes involved in nervous system development. We conclude that loss-of-function variants in ZFHX3 are a cause of syndromic ID associating with a specific DNA methylation profile.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Haploinsuficiencia/genética , Trastornos del Neurodesarrollo/genética , Encéfalo/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
2.
Am J Hum Genet ; 111(8): 1643-1655, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39089258

RESUMEN

The term "recurrent constellations of embryonic malformations" (RCEM) is used to describe a number of multiple malformation associations that affect three or more body structures. The causes of these disorders are currently unknown, and no diagnostic marker has been identified. Consequently, providing a definitive diagnosis in suspected individuals is challenging. In this study, genome-wide DNA methylation analysis was conducted on DNA samples obtained from the peripheral blood of 53 individuals with RCEM characterized by clinical features recognized as VACTERL and/or oculoauriculovertebral spectrum association. We identified a common DNA methylation episignature in 40 out of the 53 individuals. Subsequently, a sensitive and specific binary classifier was developed based on the DNA methylation episignature. This classifier can facilitate the use of RCEM episignature as a diagnostic biomarker in a clinical setting. The study also investigated the functional correlation of RCEM DNA methylation relative to other genetic disorders with known episignatures, highlighting the common genomic regulatory pathways involved in the pathophysiology of RCEM.


Asunto(s)
Metilación de ADN , Humanos , Femenino , Masculino , Anomalías Múltiples/genética , Deformidades Congénitas de las Extremidades/genética , Deformidades Congénitas de las Extremidades/diagnóstico
3.
Am J Hum Genet ; 111(8): 1605-1625, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39013458

RESUMEN

The shift to a genotype-first approach in genetic diagnostics has revolutionized our understanding of neurodevelopmental disorders, expanding both their molecular and phenotypic spectra. Kleefstra syndrome (KLEFS1) is caused by EHMT1 haploinsufficiency and exhibits broad clinical manifestations. EHMT1 encodes euchromatic histone methyltransferase-1-a pivotal component of the epigenetic machinery. We have recruited 209 individuals with a rare EHMT1 variant and performed comprehensive molecular in silico and in vitro testing alongside DNA methylation (DNAm) signature analysis for the identified variants. We (re)classified the variants as likely pathogenic/pathogenic (molecularly confirming Kleefstra syndrome) in 191 individuals. We provide an updated and broader clinical and molecular spectrum of Kleefstra syndrome, including individuals with normal intelligence and familial occurrence. Analysis of the EHMT1 variants reveals a broad range of molecular effects and their associated phenotypes, including distinct genotype-phenotype associations. Notably, we showed that disruption of the "reader" function of the ankyrin repeat domain by a protein altering variant (PAV) results in a KLEFS1-specific DNAm signature and milder phenotype, while disruption of only "writer" methyltransferase activity of the SET domain does not result in KLEFS1 DNAm signature or typical KLEFS1 phenotype. Similarly, N-terminal truncating variants result in a mild phenotype without the DNAm signature. We demonstrate how comprehensive variant analysis can provide insights into pathogenesis of the disorder and DNAm signature. In summary, this study presents a comprehensive overview of KLEFS1 and EHMT1, revealing its broader spectrum and deepening our understanding of its molecular mechanisms, thereby informing accurate variant interpretation, counseling, and clinical management.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 9 , Anomalías Craneofaciales , Metilación de ADN , Estudios de Asociación Genética , N-Metiltransferasa de Histona-Lisina , Discapacidad Intelectual , Fenotipo , Humanos , N-Metiltransferasa de Histona-Lisina/genética , Anomalías Craneofaciales/genética , Discapacidad Intelectual/genética , Cromosomas Humanos Par 9/genética , Metilación de ADN/genética , Femenino , Masculino , Niño , Preescolar , Antígenos de Histocompatibilidad/genética , Adolescente , Cardiopatías Congénitas/genética , Haploinsuficiencia/genética , Mutación
4.
Am J Hum Genet ; 111(7): 1330-1351, 2024 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-38815585

RESUMEN

Epigenetic dysregulation has emerged as an important etiological mechanism of neurodevelopmental disorders (NDDs). Pathogenic variation in epigenetic regulators can impair deposition of histone post-translational modifications leading to aberrant spatiotemporal gene expression during neurodevelopment. The male-specific lethal (MSL) complex is a prominent multi-subunit epigenetic regulator of gene expression and is responsible for histone 4 lysine 16 acetylation (H4K16ac). Using exome sequencing, here we identify a cohort of 25 individuals with heterozygous de novo variants in MSL complex member MSL2. MSL2 variants were associated with NDD phenotypes including global developmental delay, intellectual disability, hypotonia, and motor issues such as coordination problems, feeding difficulties, and gait disturbance. Dysmorphisms and behavioral and/or psychiatric conditions, including autism spectrum disorder, and to a lesser extent, seizures, connective tissue disease signs, sleep disturbance, vision problems, and other organ anomalies, were observed in affected individuals. As a molecular biomarker, a sensitive and specific DNA methylation episignature has been established. Induced pluripotent stem cells (iPSCs) derived from three members of our cohort exhibited reduced MSL2 levels. Remarkably, while NDD-associated variants in two other members of the MSL complex (MOF and MSL3) result in reduced H4K16ac, global H4K16ac levels are unchanged in iPSCs with MSL2 variants. Regardless, MSL2 variants altered the expression of MSL2 targets in iPSCs and upon their differentiation to early germ layers. Our study defines an MSL2-related disorder as an NDD with distinguishable clinical features, a specific blood DNA episignature, and a distinct, MSL2-specific molecular etiology compared to other MSL complex-related disorders.


Asunto(s)
Epilepsia , Trastornos del Neurodesarrollo , Ubiquitina-Proteína Ligasas , Adolescente , Niño , Preescolar , Femenino , Humanos , Masculino , Discapacidades del Desarrollo/genética , Metilación de ADN/genética , Epigénesis Genética , Epilepsia/genética , Histonas/metabolismo , Histonas/genética , Células Madre Pluripotentes Inducidas/metabolismo , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Fenotipo , Ubiquitina-Proteína Ligasas/metabolismo
5.
Am J Med Genet C Semin Med Genet ; : e32089, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884529

RESUMEN

Blepharophimosis with intellectual disability (BIS) is a recently recognized disorder distinct from Nicolaides-Baraister syndrome that presents with distinct facial features of blepharophimosis, developmental delay, and intellectual disability. BIS is caused by pathogenic variants in SMARCA2, that encodes the catalytic subunit of the superfamily II helicase group of the BRG1 and BRM-associated factors (BAF) forming the BAF complex, a chromatin remodeling complex involved in transcriptional regulation. Individuals bearing variants within the bipartite nuclear localization (BNL) signal domain of ADNP present with the neurodevelopmental disorder known as Helsmoortel-Van Der Aa Syndrome (HVDAS). Distinct DNA methylation profiles referred to as episignatures have been reported in HVDAS and BAF complex disorders. Due to molecular interactions between ADNP and BAF complex, and an overlapping craniofacial phenotype with narrowing of the palpebral fissures in a subset of patients with HVDAS and BIS, we hypothesized the possibility of a common phenotype-specific episignature. A distinct episignature was shared by 15 individuals with BIS-causing SMARCA2 pathogenic variants and 12 individuals with class II HVDAS caused by truncating pathogenic ADNP variants. This represents first evidence of a sensitive phenotype-specific episignature biomarker shared across distinct genetic conditions that also exhibit unique gene-specific episignatures.

6.
Hum Genet ; 143(8): 965-978, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39028335

RESUMEN

ARID1B is the most frequently mutated gene in Coffin-Siris syndrome (CSS). To date, the vast majority of causative variants reported in ARID1B are truncating, leading to nonsense-mediated mRNA decay. In the absence of experimental data, only few ARID1B amino acid substitutions have been classified as pathogenic, mainly based on clinical data and their de novo occurrence, while most others are currently interpreted as variants of unknown significance. The present study substantiates the pathogenesis of ARID1B non-truncating/NMD-escaping variants located in the SMARCA4-interacting EHD2 and DNA-binding ARID domains. Overexpression assays in cell lines revealed that the majority of EHD2 variants lead to protein misfolding and formation of cytoplasmic aggresomes surrounded by vimentin cage-like structures and co-localizing with the microtubule organisation center. ARID domain variants exhibited not only aggresomes, but also nuclear aggregates, demonstrating robust pathological effects. Protein levels were not compromised, as shown by quantitative western blot analysis. In silico structural analysis predicted the exposure of amylogenic segments in both domains due to the nearby variants, likely causing this aggregation. Genome-wide transcriptome and methylation analysis in affected individuals revealed expression and methylome patterns consistent with those of the pathogenic haploinsufficiency ARID1B alterations in CSS cases. These results further support pathogenicity and indicate two approaches for disambiguation of such variants in everyday practice. The few affected individuals harbouring EHD2 non-truncating variants described to date exhibit mild CSS clinical traits. In summary, this study paves the way for the re-evaluation of previously unclear ARID1B non-truncating variants and opens a new era in CSS genetic diagnosis.


Asunto(s)
Proteínas de Unión al ADN , Cara , Deformidades Congénitas de la Mano , Discapacidad Intelectual , Micrognatismo , Cuello , Factores de Transcripción , Humanos , Discapacidad Intelectual/genética , Micrognatismo/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Deformidades Congénitas de la Mano/genética , Cuello/anomalías , Cara/anomalías , Anomalías Múltiples/genética , Mutación , Masculino , Agregado de Proteínas
7.
Hum Genet ; 143(6): 761-773, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38787418

RESUMEN

Chung-Jansen syndrome is a neurodevelopmental disorder characterized by intellectual disability, behavioral problems, obesity and dysmorphic features. It is caused by pathogenic variants in the PHIP gene that encodes for the Pleckstrin homology domain-interacting protein, which is part of an epigenetic modifier protein complex. Therefore, we hypothesized that PHIP haploinsufficiency may impact genome-wide DNA methylation (DNAm). We assessed the DNAm profiles of affected individuals with pathogenic and likely pathogenic PHIP variants with Infinium Methylation EPIC arrays and report a specific and sensitive DNAm episignature biomarker for Chung-Jansen syndrome. In addition, we observed similarities between the methylation profile of Chung-Jansen syndrome and that of functionally related and clinically partially overlapping genetic disorders, White-Kernohan syndrome (caused by variants in DDB1 gene) and Börjeson-Forssman-Lehmann syndrome (caused by variants in PHF6 gene). Based on these observations we also proceeded to develop a common episignature biomarker for these disorders. These newly defined episignatures can be used as part of a multiclass episignature classifier for screening of affected individuals with rare disorders and interpretation of genetic variants of unknown clinical significance, and provide further insights into the common molecular pathophysiology of the clinically-related Chung-Jansen, Börjeson-Forssman-Lehmann and White-Kernohan syndromes.


Asunto(s)
Metilación de ADN , Discapacidad Intelectual , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Masculino , Femenino , Haploinsuficiencia/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/diagnóstico , Niño
8.
Genet Med ; : 101226, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39097820

RESUMEN

PURPOSE: Valproic acid or valproate is an effective antiepileptic drug; however, embryonic exposure to valproate can result in a teratogenic disorder referred to as fetal valproate syndrome (FVS, OMIM #609442). Currently there are no diagnostic biomarkers for the condition. This study aims to define an episignature biomarker for teratogenic antenatal exposure to valproate. METHODS: DNA extracted from peripheral blood of individuals with teratogenic antenatal exposure to valproate was processed using DNA methylation microarrays. Subsequently, methylation profiling and construction of support vector machine classifiers were performed in R. RESULTS: Genomic DNA methylation analysis was applied, and a distinct DNA methylation profile was identified in the majority of affected individuals. This profile was used to develop a diagnostic episignature classifier. The valproate exposure episignature exhibited high sensitivity and specificity relative to a large reference dataset of unaffected controls and individuals with a wide spectrum of syndromic disorders with episignatures. Gene set enrichment analysis demonstrated an enrichment for terms associated with cell adhesion, including significant overrepresentation of the cadherin superfamily. CONCLUSION: This study provides evidence of a robust peripheral blood-based diagnostic epigenetic biomarker for a prenatal teratogenic disorder.

9.
Genet Med ; 26(5): 101075, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38251460

RESUMEN

PURPOSE: This study aims to assess the diagnostic utility and provide reporting recommendations for clinical DNA methylation episignature testing based on the cohort of patients tested through the EpiSign Clinical Testing Network. METHODS: The EpiSign assay utilized unsupervised clustering techniques and a support vector machine-based classification algorithm to compare each patient's genome-wide DNA methylation profile with the EpiSign Knowledge Database, yielding the result that was reported. An international working group, representing distinct EpiSign Clinical Testing Network health jurisdictions, collaborated to establish recommendations for interpretation and reporting of episignature testing. RESULTS: Among 2399 cases analyzed, 1667 cases underwent a comprehensive screen of validated episignatures, imprinting, and promoter regions, resulting in 18.7% (312/1667) positive reports. The remaining 732 referrals underwent targeted episignature analysis for assessment of sequence or copy-number variants (CNVs) of uncertain significance or for assessment of clinical diagnoses without confirmed molecular findings, and 32.4% (237/732) were positive. Cases with detailed clinical information were highlighted to describe various utility scenarios for episignature testing. CONCLUSION: Clinical DNA methylation testing including episignatures, imprinting, and promoter analysis provided by an integrated network of clinical laboratories enables test standardization and demonstrates significant diagnostic yield and clinical utility beyond DNA sequence analysis in rare diseases.


Asunto(s)
Metilación de ADN , Pruebas Genéticas , Enfermedades Raras , Humanos , Metilación de ADN/genética , Enfermedades Raras/genética , Enfermedades Raras/diagnóstico , Pruebas Genéticas/normas , Pruebas Genéticas/métodos , Femenino , Regiones Promotoras Genéticas/genética , Masculino , Variaciones en el Número de Copia de ADN/genética , Niño , Adulto , Preescolar , Impresión Genómica/genética
10.
Genet Med ; 26(5): 101076, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38258669

RESUMEN

PURPOSE: Genome sequencing (GS)-specific diagnostic rates in prospective tightly ascertained exome sequencing (ES)-negative intellectual disability (ID) cohorts have not been reported extensively. METHODS: ES, GS, epigenetic signatures, and long-read sequencing diagnoses were assessed in 74 trios with at least moderate ID. RESULTS: The ES diagnostic yield was 42 of 74 (57%). GS diagnoses were made in 9 of 32 (28%) ES-unresolved families. Repeated ES with a contemporary pipeline on the GS-diagnosed families identified 8 of 9 single-nucleotide variations/copy-number variations undetected in older ES, confirming a GS-unique diagnostic rate of 1 in 32 (3%). Episignatures contributed diagnostic information in 9% with GS corroboration in 1 of 32 (3%) and diagnostic clues in 2 of 32 (6%). A genetic etiology for ID was detected in 51 of 74 (69%) families. Twelve candidate disease genes were identified. Contemporary ES followed by GS cost US$4976 (95% CI: $3704; $6969) per diagnosis and first-line GS at a cost of $7062 (95% CI: $6210; $8475) per diagnosis. CONCLUSION: Performing GS only in ID trios would be cost equivalent to ES if GS were available at $2435, about a 60% reduction from current prices. This study demonstrates that first-line GS achieves higher diagnostic rate than contemporary ES but at a higher cost.


Asunto(s)
Secuenciación del Exoma , Exoma , Discapacidad Intelectual , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Masculino , Femenino , Exoma/genética , Secuenciación del Exoma/economía , Estudios de Cohortes , Pruebas Genéticas/economía , Pruebas Genéticas/métodos , Secuenciación Completa del Genoma/economía , Niño , Genoma Humano/genética , Variaciones en el Número de Copia de ADN/genética , Polimorfismo de Nucleótido Simple/genética , Preescolar
11.
Clin Genet ; 105(6): 655-660, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38384171

RESUMEN

Precise regulation of gene expression is important for correct neurodevelopment. 9q34.3 deletions affecting the EHMT1 gene result in a syndromic neurodevelopmental disorder named Kleefstra syndrome. In contrast, duplications of the 9q34.3 locus encompassing EHMT1 have been suggested to cause developmental disorders, but only limited information has been available. We have identified 15 individuals from 10 unrelated families, with 9q34.3 duplications <1.5 Mb in size, encompassing EHMT1 entirely. Clinical features included mild developmental delay, mild intellectual disability or learning problems, autism spectrum disorder, and behavior problems. The individuals did not consistently display dysmorphic features, congenital anomalies, or growth abnormalities. DNA methylation analysis revealed a weak DNAm profile for the cases with 9q34.3 duplication encompassing EHMT1, which could segregate the majority of the affected cases from controls. This study shows that individuals with 9q34.3 duplications including EHMT1 gene present with mild non-syndromic neurodevelopmental disorders and DNA methylation changes different from Kleefstra syndrome.


Asunto(s)
Deleción Cromosómica , Duplicación Cromosómica , Cromosomas Humanos Par 9 , Metilación de ADN , Cardiopatías Congénitas , N-Metiltransferasa de Histona-Lisina , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Metilación de ADN/genética , Cromosomas Humanos Par 9/genética , Masculino , Femenino , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Duplicación Cromosómica/genética , Niño , Preescolar , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/patología , Adolescente , Fenotipo
12.
Eur J Hum Genet ; 32(4): 435-439, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38273166

RESUMEN

Verheij syndrome [VRJS; OMIM 615583] is a rare autosomal dominant neurodevelopmental disorder characterized by distinct clinical features, including growth retardation, intellectual disability, cardiac, and renal anomalies. VRJS is caused by deletions of chromosome 8q24.3 or pathogenic variants in the PUF60 gene. Recently, pathogenic PUF60 variants have been reported in some individuals with VRJS, contributing to the variability in the clinical presentation and severity of the condition. PUF60 encodes a protein involved in regulating gene expression and cellular growth. In this report, we describe a new case of VRJS with developmental delay, cardiac-, and renal abnormalities, caused by a heterozygous pathogenic PUF60 variant. Surprisingly, DNA methylation analysis revealed a pattern resembling the Cornelia de Lange syndrome (CdLS) episignature, suggesting a potential connection between PUF60 and CdLS-related genes. This case report further delineates the clinical and molecular spectrum of VRJS and supports further research to validate the interaction between VRJS and CdLS.


Asunto(s)
Síndrome de Cornelia de Lange , Discapacidad Intelectual , Humanos , Síndrome de Cornelia de Lange/diagnóstico , Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/patología , Discapacidad Intelectual/genética , Fenotipo , Proteínas de Ciclo Celular/genética
13.
Genes (Basel) ; 15(7)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-39062605

RESUMEN

FBRSL1, together with FBRS and AUTS2 (Activator of Transcription and Developmental Regulator; OMIM 607270), constitutes a tripartite AUTS2 gene family. AUTS2 and FBRSL1 are evolutionarily more closely related to each other than to FBRS (Fibrosin 1; OMIM 608601). Despite its paralogous relation to AUTS2, FBRSL1's precise role remains unclear, though it likely shares functions in neurogenesis and transcriptional regulation. Herein, we report the clinical presentation with therapeutic approaches and the molecular etiology of a patient harboring a de novo truncating variant (c.371dupC) in FBRSL1, leading to a premature stop codon (p.Cys125Leufs*7). Our study extends previous knowledge by highlighting potential interactions and implications of this variant, alongside maternal and paternal duplications, for the patient's phenotype. Using sequence conservation data and in silico analysis of the truncated protein, we generated a predicted domain structure. Furthermore, our in silico analysis was extended by taking into account SNP array results. The extension of in silico analysis was performed due to the possibility that the coexistence of FBRSL1 truncating variant contemporary with maternal and paternal duplication could be a modifier of proband's phenotype and/or influence the novel syndrome clinical characteristics. FBRSL1 protein may be involved in neurodevelopment due to its homology with AUTS2, together with distinctive neuronal expression profiles, and thus should be considered as a potential modulation of clinical characteristics in a novel syndrome. Finally, considering that FBRSL1 is apparently involved in neurogenesis and in transcriptional regulatory networks that orchestrate gene expression, together with the observation that different genetic syndromes are associated with distinct genomic DNA methylation patterns, the specific episignature has been explored.


Asunto(s)
Proteínas del Citoesqueleto , Discapacidad Intelectual , Factores de Transcripción , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Factores de Transcripción/genética , Proteínas del Citoesqueleto/genética , Masculino , Femenino , Síndrome , Fenotipo , Codón sin Sentido/genética
14.
Artículo en Inglés | MEDLINE | ID: mdl-39078990

RESUMEN

CONTEXT: Hyperinsulinemic hypoglycemia (HI) can be the presenting feature of Kabuki syndrome (KS), which is caused by loss-of-function variants in KMT2D or KDM6A. As these genes play a critical role in maintaining methylation status in chromatin, individuals with pathogenic variants have a disease-specific epigenomic profile -an episignature. OBJECTIVE: We evaluated the pathogenicity of three novel partial KDM6A duplications identified in three individuals presenting with neonatal-onset HI without typical features of KS at the time of genetic testing. METHODS: Three different partial KDM6A duplications were identified by routine targeted next generation sequencing for HI and initially classified as variants of uncertain significance (VUS) as their location, and hence their impact on the gene, was not known. Whole genome sequencing (WGS) was undertaken to map the breakpoints of the duplications with DNA methylation profiling performed in two individuals to investigate the presence of a KS-specific episignature. RESULTS: WGS confirmed the duplication in proband 1 as pathogenic as it caused a frameshift in the normal copy of the gene leading to a premature termination codon. The duplications identified in probands 2 and 3 did not alter the reading frame and therefore their significance remained uncertain after WGS. Subsequent DNA methylation profiling identified a KS-specific episignature in proband 2 but not in proband 3. CONCLUSIONS: Our findings confirm a role for KDM6A partial gene duplications in the etiology of KS and highlight the importance of performing in-depth molecular genetic analysis to properly assess the clinical significance of VUS's in the KDM6A gene.

15.
HGG Adv ; 5(3): 100309, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38751117

RESUMEN

Analysis of genomic DNA methylation by generating epigenetic signature profiles (episignatures) is increasingly being implemented in genetic diagnosis. Here we report our experience using episignature analysis to resolve both uncomplicated and complex cases of neurodevelopmental disorders (NDDs). We analyzed 97 NDDs divided into (1) a validation cohort of 59 patients with likely pathogenic/pathogenic variants characterized by a known episignature and (2) a test cohort of 38 patients harboring variants of unknown significance or unidentified variants. The expected episignature was obtained in most cases with likely pathogenic/pathogenic variants (53/59 [90%]), a revealing exception being the overlapping profile of two SMARCB1 pathogenic variants with ARID1A/B:c.6200, confirmed by the overlapping clinical features. In the test cohort, five cases showed the expected episignature, including (1) novel pathogenic variants in ARID1B and BRWD3; (2) a deletion in ATRX causing MRXFH1 X-linked mental retardation; and (3) confirmed the clinical diagnosis of Cornelia de Lange (CdL) syndrome in mutation-negative CdL patients. Episignatures analysis of the in BAF complex components revealed novel functional protein interactions and common episignatures affecting homologous residues in highly conserved paralogous proteins (SMARCA2 M856V and SMARCA4 M866V). Finally, we also found sex-dependent episignatures in X-linked disorders. Implementation of episignature profiling is still in its early days, but with increasing utilization comes increasing awareness of the capacity of this methodology to help resolve the complex challenges of genetic diagnoses.


Asunto(s)
Metilación de ADN , Trastornos del Neurodesarrollo , Humanos , Metilación de ADN/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/diagnóstico , Masculino , Femenino , Factores de Transcripción/genética , Niño , Epigénesis Genética , Preescolar , Proteínas de Unión al ADN/genética , Mutación , Adolescente
16.
HGG Adv ; 5(3): 100287, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38553851

RESUMEN

CREB-binding protein (CBP, encoded by CREBBP) and its paralog E1A-associated protein (p300, encoded by EP300) are involved in histone acetylation and transcriptional regulation. Variants that produce a null allele or disrupt the catalytic domain of either protein cause Rubinstein-Taybi syndrome (RSTS), while pathogenic missense and in-frame indel variants in parts of exons 30 and 31 cause phenotypes recently described as Menke-Hennekam syndrome (MKHK). To distinguish MKHK subtypes and define their characteristics, molecular and extended clinical data on 82 individuals (54 unpublished) with variants affecting CBP (n = 71) or p300 (n = 11) (NP_004371.2 residues 1,705-1,875 and NP_001420.2 residues 1,668-1,833, respectively) were summarized. Additionally, genome-wide DNA methylation profiles were assessed in DNA extracted from whole peripheral blood from 54 individuals. Most variants clustered closely around the zinc-binding residues of two zinc-finger domains (ZZ and TAZ2) and within the first α helix of the fourth intrinsically disordered linker (ID4) of CBP/p300. Domain-specific methylation profiles were discerned for the ZZ domain in CBP/p300 (found in nine out of 10 tested individuals) and TAZ2 domain in CBP (in 14 out of 20), while a domain-specific diagnostic episignature was refined for the ID4 domain in CBP/p300 (in 21 out of 21). Phenotypes including intellectual disability of varying degree and distinct physical features were defined for each of the regions. These findings demonstrate existence of at least three MKHK subtypes, which are domain specific (MKHK-ZZ, MKHK-TAZ2, and MKHK-ID4) rather than gene specific (CREBBP/EP300). DNA methylation episignatures enable stratification of molecular pathophysiologic entities within a gene or across a family of paralogous genes.


Asunto(s)
Proteína de Unión a CREB , Metilación de ADN , Proteína p300 Asociada a E1A , Humanos , Metilación de ADN/genética , Proteína de Unión a CREB/genética , Masculino , Proteína p300 Asociada a E1A/genética , Femenino , Niño , Adolescente , Preescolar , Adulto , Fenotipo , Adulto Joven , Síndrome de Rubinstein-Taybi/genética , Mutación , Dominios Proteicos/genética
17.
HGG Adv ; 5(2): 100273, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38297832

RESUMEN

Heterozygous missense variants and in-frame indels in SMC3 are a cause of Cornelia de Lange syndrome (CdLS), marked by intellectual disability, growth deficiency, and dysmorphism, via an apparent dominant-negative mechanism. However, the spectrum of manifestations associated with SMC3 loss-of-function variants has not been reported, leading to hypotheses of alternative phenotypes or even developmental lethality. We used matchmaking servers, patient registries, and other resources to identify individuals with heterozygous, predicted loss-of-function (pLoF) variants in SMC3, and analyzed population databases to characterize mutational intolerance in this gene. Here, we show that SMC3 behaves as an archetypal haploinsufficient gene: it is highly constrained against pLoF variants, strongly depleted for missense variants, and pLoF variants are associated with a range of developmental phenotypes. Among 14 individuals with SMC3 pLoF variants, phenotypes were variable but coalesced on low growth parameters, developmental delay/intellectual disability, and dysmorphism, reminiscent of atypical CdLS. Comparisons to individuals with SMC3 missense/in-frame indel variants demonstrated an overall milder presentation in pLoF carriers. Furthermore, several individuals harboring pLoF variants in SMC3 were nonpenetrant for growth, developmental, and/or dysmorphic features, and some had alternative symptomatologies with rational biological links to SMC3. Analyses of tumor and model system transcriptomic data and epigenetic data in a subset of cases suggest that SMC3 pLoF variants reduce SMC3 expression but do not strongly support clustering with functional genomic signatures of typical CdLS. Our finding of substantial population-scale LoF intolerance in concert with variable growth and developmental features in subjects with SMC3 pLoF variants expands the scope of cohesinopathies, informs on their allelic architecture, and suggests the existence of additional clearly LoF-constrained genes whose disease links will be confirmed only by multilayered genomic data paired with careful phenotyping.


Asunto(s)
Síndrome de Cornelia de Lange , Discapacidad Intelectual , Humanos , Proteínas de Ciclo Celular/genética , Proteoglicanos Tipo Condroitín Sulfato/genética , Proteínas Cromosómicas no Histona/genética , Síndrome de Cornelia de Lange/genética , Heterocigoto , Discapacidad Intelectual/genética , Mutación , Fenotipo
18.
Nat Commun ; 15(1): 6524, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107278

RESUMEN

Sequence-based genetic testing identifies causative variants in ~ 50% of individuals with developmental and epileptic encephalopathies (DEEs). Aberrant changes in DNA methylation are implicated in various neurodevelopmental disorders but remain unstudied in DEEs. We interrogate the diagnostic utility of genome-wide DNA methylation array analysis on peripheral blood samples from 582 individuals with genetically unsolved DEEs. We identify rare differentially methylated regions (DMRs) and explanatory episignatures to uncover causative and candidate genetic etiologies in 12 individuals. Using long-read sequencing, we identify DNA variants underlying rare DMRs, including one balanced translocation, three CG-rich repeat expansions, and four copy number variants. We also identify pathogenic variants associated with episignatures. Finally, we refine the CHD2 episignature using an 850 K methylation array and bisulfite sequencing to investigate potential insights into CHD2 pathophysiology. Our study demonstrates the diagnostic yield of genome-wide DNA methylation analysis to identify causal and candidate variants as 2% (12/582) for unsolved DEE cases.


Asunto(s)
Variaciones en el Número de Copia de ADN , Metilación de ADN , Epilepsia , Humanos , Metilación de ADN/genética , Femenino , Niño , Masculino , Epilepsia/genética , Epilepsia/diagnóstico , Variaciones en el Número de Copia de ADN/genética , Preescolar , Proteínas de Unión al ADN/genética , Adolescente , Pruebas Genéticas/métodos , Lactante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA