Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 16(1): e1008544, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31978080

RESUMEN

The genetic architecture of the small and isolated Greenlandic population is advantageous for identification of novel genetic variants associated with cardio-metabolic traits. We aimed to identify genetic loci associated with body mass index (BMI), to expand the knowledge of the genetic and biological mechanisms underlying obesity. Stage 1 BMI-association analyses were performed in 4,626 Greenlanders. Stage 2 replication and meta-analysis were performed in additional cohorts comprising 1,058 Yup'ik Alaska Native people, and 1,529 Greenlanders. Obesity-related traits were assessed in the stage 1 study population. We identified a common variant on chromosome 11, rs4936356, where the derived G-allele had a frequency of 24% in the stage 1 study population. The derived allele was genome-wide significantly associated with lower BMI (beta (SE), -0.14 SD (0.03), p = 3.2x10-8), corresponding to 0.64 kg/m2 lower BMI per G allele in the stage 1 study population. We observed a similar effect in the Yup'ik cohort (-0.09 SD, p = 0.038), and a non-significant effect in the same direction in the independent Greenlandic stage 2 cohort (-0.03 SD, p = 0.514). The association remained genome-wide significant in meta-analysis of the Arctic cohorts (-0.10 SD (0.02), p = 4.7x10-8). Moreover, the variant was associated with a leaner body type (weight, -1.68 (0.37) kg; waist circumference, -1.52 (0.33) cm; hip circumference, -0.85 (0.24) cm; lean mass, -0.84 (0.19) kg; fat mass and percent, -1.66 (0.33) kg and -1.39 (0.27) %; visceral adipose tissue, -0.30 (0.07) cm; subcutaneous adipose tissue, -0.16 (0.05) cm, all p<0.0002), lower insulin resistance (HOMA-IR, -0.12 (0.04), p = 0.00021), and favorable lipid levels (triglyceride, -0.05 (0.02) mmol/l, p = 0.025; HDL-cholesterol, 0.04 (0.01) mmol/l, p = 0.0015). In conclusion, we identified a novel variant, where the derived G-allele possibly associated with lower BMI in Arctic populations, and as a consequence also leaner body type, lower insulin resistance, and a favorable lipid profile.


Asunto(s)
Índice de Masa Corporal , Cromosomas Humanos Par 11/genética , Inuk/genética , Polimorfismo de Nucleótido Simple , Adiposidad , Colesterol/sangre , ADN Intergénico/genética , Femenino , Groenlandia , Humanos , Resistencia a la Insulina , Masculino , Metaboloma , Circunferencia de la Cintura
2.
Int J Obes (Lond) ; 44(1): 125-135, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31467422

RESUMEN

OBJECTIVES: Studies suggest that exercise affects the composition and function of the human gut microbiota, yet this has not been investigated in a randomized controlled trial. The primary aim of this study was to assess if exercise alters the diversity, composition and functional potential of the gut microbiota in free-living humans. A secondary aim was to test whether alpha diversity was associated with phenotypical outcomes. METHODS: Eighty eight participants with overweight or obesity completed a 6-month randomized controlled trial with 4 arms; habitual living (CON), active commuting by bike (BIKE) and leisure-time exercise of moderate (MOD) or vigorous intensity (VIG). Faecal samples for 16 s rRNA gene amplicon sequencing were collected prior to randomization and again after 3 and 6 months, with simultaneous registration of phenotypical outcomes and diet. RESULTS: Shannon's diversity index increased by 5% in VIG (CI95 1-9%, P = 0.012) at 3 months compared with CON. No associations were observed between alpha diversity and phenotypical outcomes. Beta diversity changed in all exercise groups compared with CON, particularly the participants in VIG showed decreased heterogeneity. No genera changed significantly. The inferred functional potential of the microbiota in the exercise groups was increased, primarily at 3 months and in MOD. CONCLUSION: Structured exercise induced subtle changes to the human gut microbiota. Cardiorespiratory fitness and fat mass were not associated with alpha diversity.


Asunto(s)
Ejercicio Físico/fisiología , Microbioma Gastrointestinal/fisiología , Obesidad/microbiología , Sobrepeso/microbiología , Adulto , Femenino , Humanos , Masculino
3.
Diabetologia ; 62(6): 1024-1035, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30904939

RESUMEN

AIMS/HYPOTHESIS: Individuals with type 2 diabetes have an altered bacterial composition of their gut microbiota compared with non-diabetic individuals. However, these alterations may be confounded by medication, notably the blood-glucose-lowering biguanide, metformin. We undertook a clinical trial in healthy and previously drug-free men with the primary aim of investigating metformin-induced compositional changes in the non-diabetic state. A secondary aim was to examine whether the pre-treatment gut microbiota was related to gastrointestinal adverse effects during metformin treatment. METHODS: Twenty-seven healthy young Danish men were included in an 18-week one-armed crossover trial consisting of a pre-intervention period, an intervention period and a post-intervention period, each period lasting 6 weeks. Inclusion criteria were men of age 18-35 years, BMI between 18.5 kg/m2 and 27.5 kg/m2, HbA1c < 39 mmol/mol (5.7%) and plasma creatinine within the normal range. No prescribed medication, including antibiotics, for 2 months prior to recruitment were allowed and no previous gastrointestinal surgery, discounting appendectomy or chronic illness requiring medical treatment. During the intervention the participants were given metformin up to 1 g twice daily. Participants were examined five times in the fasting state with blood sampling and recording of gastrointestinal symptoms. Examinations took place at Frederiksberg Hospital, Denmark before and after the pre-intervention period, halfway through and immediately after the end of intervention and after the wash-out period. Faecal samples were collected at nine evenly distributed time points, and bacterial DNA was extracted and subjected to 16S rRNA gene amplicon sequencing in order to evaluate gut microbiota composition. Subjective gastrointestinal symptoms were reported at each visit. RESULTS: Data from participants who completed visit 1 (n=23) are included in analyses. For the primary outcome the relative abundance of 11 bacterial genera significantly changed during the intervention but returned to baseline levels after treatment cessation. In line with previous reports, we observed a reduced abundance of Intestinibacter spp. and Clostridium spp., as well as an increased abundance of Escherichia/Shigella spp. and Bilophila wadsworthia. The relative abundance at baseline of 12 bacterial genera predicted self-reported gastrointestinal adverse effects. CONCLUSIONS/INTERPRETATION: Intake of metformin changes the gut microbiota composition in normoglycaemic young men. The microbiota changes induced by metformin extend and validate previous reports in individuals with type 2 diabetes. Secondary analyses suggest that pre-treatment gut microbiota composition may be a determinant for development of gastrointestinal adverse effects following metformin intake. These results require further investigation and replication in larger prospective studies. TRIAL REGISTRATION: Clinicaltrialsregister.eu 2015-000199-86 and ClinicalTrials.gov NCT02546050 FUNDING: This project was funded by Danish Diabetes Association and The Novo Nordisk Foundation.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Hipoglucemiantes/efectos adversos , Metformina/efectos adversos , Adolescente , Adulto , Glucemia/efectos de los fármacos , Estudios Cruzados , Dinamarca , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Heces/microbiología , Humanos , Hipoglucemiantes/uso terapéutico , Masculino , Metformina/uso terapéutico , Estudios Prospectivos , ARN Ribosómico 16S/genética , Adulto Joven
4.
Environ Microbiol ; 18(1): 65-74, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25727469

RESUMEN

Natural transformation systems and type IV pili are linked in many naturally competent bacteria. In the Gram-negative bacterium Thermus thermophilus, a leading model organism for studies of DNA transporters in thermophilic bacteria, seven competence proteins play a dual role in both systems, whereas two competence genes, comEA and comEC, are suggested to represent unique DNA translocator proteins. Here we show that the T. thermophilus ComEA protein binds dsDNA and is anchored in the inner membrane. comEA is co-transcribed with the flanking comEC gene, and transcription of this operon is upregulated by nutrient limitation and low temperature. To our surprise, a comEC mutant was impaired in piliation. We followed this observation and uncovered that the impaired piliation of the comEC mutant is due to a transcriptional downregulation of pilA4 and the pilN both playing a dual role in piliation and natural competence. Moreover, the comEC mutation resulted in a dramatic decrease in mRNA levels of the pseudopilin gene pilA1, which is unique for the DNA transporter. We conclude that ComEC modulates transcriptional regulation of type IV pili and DNA translocator components thereby mediating a response to extracellular parameters.


Asunto(s)
Transporte Biológico Activo/genética , Competencia de la Transformación por ADN/genética , Proteínas de Unión al ADN/genética , Fimbrias Bacterianas/genética , Proteínas de la Membrana/genética , Thermus thermophilus/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN/metabolismo , Fimbrias Bacterianas/metabolismo , Mutación , Operón/genética , Transcripción Genética/genética
5.
Sci Rep ; 14(1): 14738, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926497

RESUMEN

The microbial communities of the oral cavity are important elements of oral and systemic health. With emerging evidence highlighting the heritability of oral bacterial microbiota, this study aimed to identify host genome variants that influence oral microbial traits. Using data from 16S rRNA gene amplicon sequencing, we performed genome-wide association studies with univariate and multivariate traits of the salivary microbiota from 610 unrelated adults from the Danish ADDITION-PRO cohort. We identified six single nucleotide polymorphisms (SNPs) in human genomes that showed associations with abundance of bacterial taxa at different taxonomical tiers (P < 5 × 10-8). Notably, SNP rs17793860 surpassed our study-wide significance threshold (P < 1.19 × 10-9). Additionally, rs4530093 was linked to bacterial beta diversity (P < 5 × 10-8). Out of these seven SNPs identified, six exerted effects on metabolic traits, including glycated hemoglobin A1c, triglyceride and high-density lipoprotein cholesterol levels, the risk of type 2 diabetes and stroke. Our findings highlight the impact of specific host SNPs on the composition and diversity of the oral bacterial community. Importantly, our results indicate an intricate interplay between host genetics, the oral microbiota, and metabolic health. We emphasize the need for integrative approaches considering genetic, microbial, and metabolic factors.


Asunto(s)
Estudio de Asociación del Genoma Completo , Microbiota , Boca , Polimorfismo de Nucleótido Simple , Humanos , Femenino , Microbiota/genética , Masculino , Persona de Mediana Edad , Boca/microbiología , Adulto , ARN Ribosómico 16S/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/microbiología , Saliva/microbiología , Anciano
6.
Sci Rep ; 14(1): 8315, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594375

RESUMEN

Latent autoimmune diabetes in adults (LADA) is a heterogeneous disease characterized by autoantibodies against insulin producing pancreatic beta cells and initial lack of need for insulin treatment. The aim of the present study was to investigate if individuals with LADA have an altered gut microbiota relative to non-diabetic control subjects, individuals with type 1 diabetes (T1D), and individuals with type 2 diabetes (T2D). Bacterial community profiling was performed with primers targeting the variable region 4 of the 16S rRNA gene and sequenced. Amplicon sequence variants (ASVs) were generated with DADA2 and annotated to the SILVA database. The gut virome was sequenced, using a viral particle enrichment and metagenomics approach, assembled, and quantified to describe the composition of the viral community. Comparison of the bacterial alpha- and beta-diversity measures revealed that the gut bacteriome of individuals with LADA resembled that of individuals with T2D. Yet, specific genera were found to differ in abundance in individuals with LADA compared with T1D and T2D, indicating that LADA has unique taxonomical features. The virome composition reflected the stability of the most dominant order Caudovirales and the families Siphoviridae, Podoviridae, and Inoviridae, and the dominant family Microviridae. Further studies are needed to confirm these findings.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Intolerancia a la Glucosa , Diabetes Autoinmune Latente del Adulto , Adulto , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Autoinmune Latente del Adulto/genética , Microbioma Gastrointestinal/genética , Adenosina Desaminasa , ARN Ribosómico 16S/genética , Péptidos y Proteínas de Señalización Intercelular , Insulina
7.
NPJ Aging ; 9(1): 7, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012386

RESUMEN

The gut microbiota impacts systemic levels of multiple metabolites including NAD+ precursors through diverse pathways. Nicotinamide riboside (NR) is an NAD+ precursor capable of regulating mammalian cellular metabolism. Some bacterial families express the NR-specific transporter, PnuC. We hypothesized that dietary NR supplementation would modify the gut microbiota across intestinal sections. We determined the effects of 12 weeks of NR supplementation on the microbiota composition of intestinal segments of high-fat diet-fed (HFD) rats. We also explored the effects of 12 weeks of NR supplementation on the gut microbiota in humans and mice. In rats, NR reduced fat mass and tended to decrease body weight. Interestingly, NR increased fat and energy absorption but only in HFD-fed rats. Moreover, 16S rRNA gene sequencing analysis of intestinal and fecal samples revealed an increased abundance of species within Erysipelotrichaceae and Ruminococcaceae families in response to NR. PnuC-positive bacterial strains within these families showed an increased growth rate when supplemented with NR. The abundance of species within the Lachnospiraceae family decreased in response to HFD irrespective of NR. Alpha and beta diversity and bacterial composition of the human fecal microbiota were unaltered by NR, but in mice, the fecal abundance of species within Lachnospiraceae increased while abundances of Parasutterella and Bacteroides dorei species decreased in response to NR. In conclusion, oral NR altered the gut microbiota in rats and mice, but not in humans. In addition, NR attenuated body fat mass gain in rats, and increased fat and energy absorption in the HFD context.

8.
Eur J Clin Nutr ; 76(2): 297-308, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34117375

RESUMEN

BACKGROUND: Urolithin A (UA) is produced by gut microflora from foods rich in ellagitannins. UA has been shown to improve mitochondrial health preclinically and in humans. Not everyone has a microbiome capable of producing UA, making supplementation with UA an appealing strategy. OBJECTIVE: This is the first detailed investigation of the prevalence of UA producers in a healthy population and the ability of direct UA supplementation to overcome both microbiome and dietary variability. Dietary intake of a glass of pomegranate juice (PJ) was used to assess UA producer status (n = 100 participants) and to characterize differences in gut microbiome between UA producers from non-producers. METHODS: Subjects were randomized (1:1) to either PJ or a food product containing UA (500 mg). Prevalence of UA producers and non-producers were determined in the PJ group. Diet questionnaires and fecal samples were collected to compare differences between UA producers and non-producers along with plasma samples at different time points to assess levels of UA and its conjugates between the interventions. RESULTS: Only 12% of subjects had detectable levels of UA at baseline. Following PJ intake ~40% of the subjects converted significantly the precursor compounds into UA. UA producers were distinguished by a significantly higher gut microbiome diversity and ratio of Firmicutes to Bacteroides. Direct supplementation with UA significantly increased plasma levels and provided a >6-fold exposure to UA vs. PJ (p < 0.0001). CONCLUSIONS: Differences in gut microbiome and diet that dictate natural exposure to UA can be overcome via direct dietary UA supplementation.


Asunto(s)
Microbioma Gastrointestinal , Adulto , Cumarinas/farmacología , Exposición Dietética , Suplementos Dietéticos , Humanos
9.
Front Cell Infect Microbiol ; 12: 1055117, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467723

RESUMEN

Introduction: Previous research indicates that the salivary microbiota may be a biomarker of oral as well as systemic disease. However, clarifying the potential bias from general health status and lifestyle-associated factors is a prerequisite of using the salivary microbiota for screening. Materials & Methods: ADDDITION-PRO is a nationwide Danish cohort, nested within the Danish arm of the Anglo-Danish-Dutch Study of Intensive treatment in People with Screen-Detected Diabetes in Primary Care. Saliva samples from n=746 individuals from the ADDITION-PRO cohort were characterized using 16s rRNA sequencing. Alpha- and beta diversity as well as relative abundance of genera was examined in relation to general health and lifestyle-associated variables. Permutational multivariate analysis of variance (PERMANOVA) was performed on individual variables and all variables together. Classification models were created using sparse partial-least squares discriminant analysis (sPLSDA) for variables that showed statistically significant differences based on PERMANOVA analysis (p < 0.05). Results: Glycemic status, hemoglobin-A1c (HbA1c) level, sex, smoking and weekly alcohol intake were found to be significantly associated with salivary microbial composition (individual variables PERMANOVA, p < 0.05). Collectively, these variables were associated with approximately 5.8% of the observed differences in the composition of the salivary microbiota. Smoking status was associated with 3.3% of observed difference, and smoking could be detected with good accuracy based on salivary microbial composition (AUC 0.95, correct classification rate 79.6%). Conclusions: Glycemic status, HbA1c level, sex, smoking and weekly alcohol intake were significantly associated with the composition of the salivary microbiota. Despite smoking only being associated with 3.3% of the difference in overall salivary microbial composition, it was possible to create a model for detection of smoking status with a high correct classification rate. However, the lack of information on the oral health status of participants serves as a limitation in the present study. Further studies in other cohorts are needed to validate the external validity of these findings.


Asunto(s)
Estilo de Vida , Microbiota , Humanos , ARN Ribosómico 16S/genética , Estudios de Cohortes , Microbiota/genética , Análisis de Varianza
10.
Eur Neuropsychopharmacol ; 43: 10-21, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32933808

RESUMEN

It is well-established in preclinical studies that various probiotics may improve behaviours related to psychiatric disease. We have previously shown that probiotics protected against high-fat diet (HFD)-induced depressive-like behaviour in Flinders Sensitive Line (FSL) rats, whereas FSL rats on control (CON) diet were unaffected. Therefore, we hypothesised that a dysmetabolic component of depression may exist that involves the gut microbiota and that such component may be reflected in the plasma metabolome. The aims of the present study post hoc analyses were 1) to study the effect of probiotics on gut microbiota composition and its association with depressive-like behaviour in FSL rats, and 2) to identify plasma metabolites associated with gut microbiota and depressive-like behaviour. Forty-six FSL rats were fed CON or HFD and treated with multi-species probiotics (nine Bifidobacterium, Lactococcus and Lactobacillus species) for 12 weeks. Faecal samples were collected for 16S rRNA (VR4) gene amplicon sequencing (Illumina MiSeq), and an untargeted plasma metabolomics was performed. We found that probiotics increased the relative faecal abundance of the Bifidobacterium, Lactococcus and Lactobacillus genera in HFD-fed rats only. Also, a HFD-induced microbiota component associated with depressive-like behaviour was identified, and probiotics improved the component score. Finally, the plasma levels of 44 metabolites correlated with the depression-related microbiota component, and three such metabolites had good predictive ability for depressive-like behaviour. Potentially, our findings imply that a subtype of depression characterised by a diet-induced, pro-depressant gut microbiota may exist and that analysis of related plasma metabolites may reveal aberrant microbiota functioning related to depression.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Animales , Dieta Alta en Grasa/efectos adversos , Heces , ARN Ribosómico 16S/genética , Ratas
11.
Int J Chron Obstruct Pulmon Dis ; 16: 3203-3215, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858021

RESUMEN

PURPOSE: Infections from the oral microbiome may lead to exacerbations of chronic obstructive pulmonary disease (COPD). We investigated whether advanced dental cleaning could reduce exacerbation frequency. Secondary outcomes were disease-specific health status, lung function, and whether the bacterial load and composition of plaque microbiome at baseline were associated with a difference in outcomes. PATIENTS AND METHODS: One-hundred-one primary and secondary care patients with COPD were randomized to intervention with advanced dental cleaning or to dental examination only, repeated after six months. At baseline and at 12 months, data of exacerbations, lung function, COPD Assessment Test (CAT) score, and periodontal status were collected from questionnaires, record review, and periodontal examination. Student's t-test and Mann-Whitney-U (MWU) test compared changes in outcomes. The primary outcome variable was also assessed using multivariable linear regression with adjustment for potential confounders. Microbiome analyses of plaque samples taken at baseline were performed using Wilcoxon signed ranks tests for calculation of alpha diversity, per mutational multivariate analysis of variance for beta diversity, and receiver operating characteristic curves for prediction of outcomes based on machine learning models. RESULTS: In the MWU test, the annual exacerbation frequency was significantly reduced in patients previously experiencing frequent exacerbations (p = 0.020) and in those with repeated advanced dental cleaning (p = 0.039) compared with the non-treated control group, but not in the total population including both patients with a single and repeated visits (p = 0.207). The result was confirmed in multivariable linear regression, where the risk of new exacerbations was significantly lower in patients both in the intention to treat analysis (regression coefficient 0.36 (95% CI 0.25-0.52), p < 0.0001) and in the population with repeated dental cleaning (0.16 (0.10-0.27), p < 0.0001). The composition of microbiome at baseline was moderately predictive of an increased risk of worsened health status at 12 months (AUC = 0.723). CONCLUSION: Advanced dental cleaning is associated with a reduced frequency of COPD exacerbations. Regular periodontal examination and dental cleaning may be of clinical importance to prevent COPD exacerbations.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Progresión de la Enfermedad , Estado de Salud , Humanos , Encuestas y Cuestionarios
12.
Eur Neuropsychopharmacol ; 29(1): 98-110, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30396698

RESUMEN

Numerous studies have been published describing the effect of various probiotics (PRO) on behaviours related to psychiatric disease. We have previously shown a robust antidepressant-like effect of PRO in rats, but over time, the treatment effect seems to vary significantly between different sets of rats from the same commercial vendor. Therefore, we hypothesised that the antidepressant-like response may be modulated by the cohabiting gut microbiota. The aims of the present study were (1) to investigate any differences in the gut microbiota composition between responders (Resp) and non-responders (Non-resp) to PRO with regards to depressive-like behaviour, and (2) to evaluate the effects of PRO on the microbiota composition. Two sets of 20 male Sprague-Dawley rats each were treated with multi-species PRO (nine Bifidobacterium, Lactococcus and Lactobacillus species) for eight weeks and subjected to a behavioural assessment. Faecal samples were collected for 16 s rRNA (VR4) gene amplicon sequencing (Illumina MiSeq). As previously reported, PRO-treated Resp animals showed a marked decrease in depressive-like behaviour, whereas no such response was seen in Non-resp. We observed profound differences in the gut microbiota composition between the two sets of rats, and the relative faecal abundance of the genera that comprised PRO was higher in Resp than in Non-resp although treated with the same dose of PRO. Particularly, the relative abundance of the Lactobacillus genus was not increased in PRO-treated Non-resp animals. In conclusion, the cohabiting microbiota and the faecal abundance of PRO may modulate the antidepressant-like effect of PRO in rats.


Asunto(s)
Antidepresivos/farmacología , Heces/microbiología , Microbioma Gastrointestinal/fisiología , Probióticos/análisis , Probióticos/farmacología , Animales , Antidepresivos/análisis , Conducta Animal/efectos de los fármacos , ADN/análisis , Masculino , Ratas
13.
Anim Microbiome ; 1(1): 11, 2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-33499919

RESUMEN

BACKGROUND: Growing evidence supports the role of gut microbiota in obesity and its related disorders including type 2 diabetes. Ob/ob mice, which are hyperphagic due to leptin deficiency, are commonly used models of obesity and were instrumental in suggesting links between gut microbiota and obesity. Specific changes in their gut microbiota such as decreased microbial diversity and increased Firmicutes to Bacteroidetes ratio have been suggested to contribute to obesity via increased microbiota capacity to harvest energy. However, the differential development of ob/ob mouse gut microbiota compared to wild type microbiota and the role of hyperphagia in their metabolic impairment have not been investigated thoroughly. RESULTS: We performed a 10-week long study in ob/ob (n = 12) and wild type control (n = 12) mice fed ad libitum. To differentiate effects of leptin deficiency from hyperphagia, we pair-fed an additional group of ob/ob mice (n = 11) based on the food consumption of control mice. Compared to control mice, ob/ob mice fed ad libitum exhibited compromised glucose metabolism and increased body fat percentage. Pair-fed ob/ob mice exhibited even more compromised glucose metabolism and maintained strikingly similar high body fat percentage at the cost of lean body mass. Acclimatization of the microbiota to our facility took up to 5 weeks. Leptin deficiency impacted gut microbial composition, explaining 18.3% of the variance. Pair-feeding also altered several taxa, although the overall community composition at the end of the study was not significantly different. We found 24 microbial taxa associations with leptin deficiency, notably enrichment of members of Lactobacillus and depletion of Akkermansia muciniphila. Microbial metabolic functions related to energy harvest, including glycan degradation, phosphotransferase systems and ABC transporters, were enriched in the ob/ob mice. Taxa previously reported as relevant for obesity were associated with body weight, including Oscillibacter and Alistipes (both negatively correlated) and Prevotella (positively correlated). CONCLUSIONS: Leptin deficiency caused major changes in the mouse gut microbiota composition. Several microbial taxa were associated with body composition. Pair-fed mice maintained a pre-set high proportion of body fat despite reduced calorie intake, and exhibited more compromised glucose metabolism, with major implications for treatment options for genetically obese individuals.

14.
Sci Rep ; 8(1): 5847, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29643500

RESUMEN

Little is known about the effect of long-term diet patterns on the composition and functional potential of the human salivary microbiota. In the present study, we sought to contribute to the ongoing elucidation of dietary effects on the oral microbial community by examining the diversity, composition and functional potential of the salivary microbiota in 160 healthy vegans and omnivores using 16S rRNA gene amplicon sequencing. We further sought to identify bacterial taxa in saliva associated with host inflammatory markers. We show that compositional differences in the salivary microbiota of vegans and omnivores is present at all taxonomic levels below phylum level and includes upper respiratory tract commensals (e.g. Neisseria subflava, Haemophilus parainfluenzae, and Rothia mucilaginosa) and species associated with periodontal disease (e.g. Campylobacter rectus and Porphyromonas endodontalis). Dietary intake of medium chain fatty acids, piscine mono- and polyunsaturated fatty acids, and dietary fibre was associated with bacterial diversity, community structure, as well as relative abundance of several species-level operational taxonomic units. Analysis of imputed genomic potential revealed several metabolic pathways differentially abundant in vegans and omnivores indicating possible effects of macro- and micro-nutrient intake. We also show that certain oral bacteria are associated with the systemic inflammatory state of the host.


Asunto(s)
Bacterias/aislamiento & purificación , Dieta Vegana , Conducta Alimentaria/fisiología , Microbiota/fisiología , Saliva/microbiología , Adulto , Bacterias/genética , ADN Bacteriano/aislamiento & purificación , Voluntarios Sanos , Humanos , Redes y Vías Metabólicas/fisiología , ARN Ribosómico 16S/genética , Adulto Joven
15.
Sci Rep ; 8(1): 16626, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30413727

RESUMEN

Studies in rodent models have shown that alterations in drinking water pH affect both the composition of the gut microbiota and host glucose regulation. To explore a potential impact of electrochemically reduced alkaline (pH ≈ 9) versus neutral (pH ≈ 7) drinking water (2 L/day) on human intestinal microbiota and host glucose metabolism we conducted a randomized, non-blinded, cross-over study (two 2-week intervention periods, separated by a 3-week wash-out) in 29 healthy, non-smoking Danish men, aged 18 to 35 years, with a body mass index between 20.0 to 27.0 kg m-2. Volunteers were ineligible if they had previously had abdominal surgery, had not been weight stabile for at least two months, had received antibiotic treatment within 2 months, or had a habitual consumption of caloric or artificially sweetened beverages in excess of 1 L/week or an average intake of alcohol in excess of 7 units/week. Microbial DNA was extracted from faecal samples collected at four time points, before and after each intervention, and subjected to 16S rRNA gene amplicon sequencing (Illumina MiSeq, V4 region). Glycaemic regulation was evaluated by means of an oral glucose tolerance test.No differential effect of alkaline versus neutral drinking water was observed for the primary outcome, overall gut microbiota diversity as represented by Shannon's index. Similarly, neither a differential effect on microbiota richness or community structure was observed. Nor did we observe a differential effect on the abundance of individual operational taxonomic units (OTUs) or genera. However, analyses of within period effects revealed a significant (false discovery rate ≤5%) increase in the relative abundance of 9 OTUs assigned to order Clostridiales, family Ruminococcaceae, genus Bacteroides, and species Prevotella copri, indicating a potential effect of quantitative or qualitative changes in habitual drinking habits. An increase in the concentration of plasma glucose at 30 minutes and the incremental area under the curve of plasma glucose from 0 30 and 0 120 minutes, respectively, was observed when comparing the alkaline to the neutral intervention. However, results did not withstand correction for multiplicity. In contrast to what has been reported in rodents, a change in drinking water pH had no impact on the composition of the gut microbiota or glucose regulation in young male adults. The study is registered at www.clinicaltrials.gov (NCT02917616).


Asunto(s)
Agua Potable/química , Microbioma Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/microbiología , Glucosa/farmacología , Adolescente , Adulto , Estudios de Casos y Controles , Estudios Cruzados , Agua Potable/análisis , Tracto Gastrointestinal/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Masculino , Edulcorantes/farmacología , Adulto Joven
16.
Nat Genet ; 50(2): 172-174, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29311636

RESUMEN

We have identified a variant in ADCY3 (encoding adenylate cyclase 3) associated with markedly increased risk of obesity and type 2 diabetes in the Greenlandic population. The variant disrupts a splice acceptor site, and carriers have decreased ADCY3 RNA expression. Additionally, we observe an enrichment of rare ADCY3 loss-of-function variants among individuals with type 2 diabetes in trans-ancestry cohorts. These findings provide new information on disease etiology relevant for future treatment strategies.


Asunto(s)
Adenilil Ciclasas/genética , Diabetes Mellitus Tipo 2/genética , Mutación con Pérdida de Función , Obesidad/genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Estudios de Cohortes , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/epidemiología , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Groenlandia/epidemiología , Humanos , Inuk/genética , Inuk/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Obesidad/complicaciones , Obesidad/epidemiología , Factores de Riesgo , Adulto Joven
17.
FEMS Microbiol Lett ; 357(1): 56-62, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24935261

RESUMEN

The thermophilic bacterium Thermus thermophilus HB27 is known for its highly efficient natural transformation system, which has become a model system to study the structure and function of DNA transporter in thermophilic bacteria. The DNA transporter is functionally linked to type IV pili (T4P), which are essential for twitching motility and adhesion to solid surfaces. However, the pilus structures themselves are dispensable for natural transformation. Here, we report that the cellular mRNA levels of the major structural subunit of the T4P, PilA4, are regulated by environmental factors. Growth of T. thermophilus in minimal medium or low temperature (55 °C) leads to a significant increase in pilA4 transcripts. In contrast, the transcript levels of the minor pilin pilA1 as well as other T4P genes are nearly unaffected. The elevated pilA4 mRNA levels are accompanied by an increase in piliation of the cells but not by elevated natural transformation frequencies. Hyperpiliation leads to increased adhesion to plastic surfaces. The increased cell-surface interactions are suggested to represent an adaptive response to temperature stress and may be advantageous for survival of T. thermophilus.


Asunto(s)
Fimbrias Bacterianas/genética , Genes Bacterianos/genética , Thermus thermophilus/genética , Proteínas Bacterianas/genética , Transporte Biológico/genética , ADN Bacteriano/genética , Ambiente , ARN Mensajero/genética , Temperatura , Transformación Bacteriana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA