Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Mech Behav Biomed Mater ; 28: 366-82, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23707600

RESUMEN

The inelastic deformability of the mineralised matrix in bones is critical to their high toughness, but the nanoscale mechanisms are incompletely understood. Antler is a tough bone type, with a nanostructure composed of mineralised collagen fibrils ∼100nm diameter. We track the fibrillar deformation of antler tissue during cyclic loading using in situ synchrotron small-angle X-ray diffraction (SAXD), finding that residual strain remains in the fibrils after the load was removed. During repeated unloading/reloading cycles, the fibril strain shows minimal hysteresis when plotted as a function of tissue strain, indicating that permanent plastic strain accumulates inside the fibril. We model the tensile response of the mineralised collagen fibril by a two - level staggered model - including both elastic - and inelastic regimes - with debonding between mineral and collagen within fibrils triggering macroscopic inelasticity. In the model, the subsequent frictional sliding at intrafibrillar mineral/collagen interfaces accounts for subsequent inelastic deformation of the tissue in tension. The model is compared to experimental measurements of fibrillar and mineral platelet strain during tensile deformation, measured by in situ synchrotron SAXD and wide-angle X-ray diffraction (WAXD) respectively, as well as macroscopic tissue stress and strain. By fitting the model predictions to experimentally observed parameters like the yield point, elastic modulus and post-yield slope, extremely good agreement is found between the model and experimental data at both the macro- and at the nanoscale. Our results provide strong evidence that intrafibrillar sliding between mineral and collagen leads to permanent plastic strain at both the fibril and the tissue level, and that the energy thus dissipated is a significant factor behind the high toughness of antler bone.


Asunto(s)
Cuernos de Venado , Huesos/metabolismo , Colágeno/metabolismo , Fenómenos Mecánicos , Minerales/metabolismo , Animales , Fenómenos Biomecánicos , Ciervos , Módulo de Elasticidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA