Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Bioconjug Chem ; 33(1): 226-237, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34914353

RESUMEN

In recent years, many researchers have struggled to obtain carbon dots (CDs) that possess strong photoluminescence in the red region of light. Success in this area has been limited, although the past few years have brought several promising reports on this topic. The most successful efforts in this area still seem to struggle from a lack of dispersibility/reduced emission in water. This work endeavors to understand the formation process of CDs that do not possess strong performance in an aqueous environment and to improve their capabilities in bioimaging. o-Phenylenediamine (o-PDA) is used along with various precursors in several different solvents (varying acidic and oxidative strengths) to understand the formation process behind the structure leading to red emission that is sensitive to water. These results showed that the combination of acid properties and oxidation is essential for this process, and the important reactions are oligomerization of o-PDA and the crosslinking of these oligomers to form aromatic structural segments of CDs. These CDs are shown to be capable of quantitatively detecting water in organic solvents. Additionally, we have shown that conjugation with transferrin remarkably enhances the biocompatibility of these CDs. Transferrin-conjugated CDs with better biocompatibility were applied to bioimaging studies of neuroblastoma cell lines with N-myc and non-N-myc gene amplification, for the first time. Furthermore, CDs showed versatile bioimaging capability toward a highly aggressive neuroblastoma subgroup of tumors. The importance of creating red-emissive CDs has been well established, and this work is an important step toward understanding their formation and realizing their use in biological systems.


Asunto(s)
Carbono
2.
Sci Adv ; 6(35): eabc1977, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32923648

RESUMEN

Topology and strong electron correlations are crucial ingredients in emerging quantum materials, yet their intersection in experimental systems has been relatively limited to date. Strongly correlated Weyl semimetals, particularly when magnetism is incorporated, offer a unique and fertile platform to explore emergent phenomena in novel topological matter and topological spintronics. The antiferromagnetic Weyl semimetal Mn3Sn exhibits many exotic physical properties such as a large spontaneous Hall effect and has recently attracted intense interest. In this work, we report synthesis of epitaxial Mn3+x Sn1-x films with greatly extended compositional range in comparison with that of bulk samples. As Sn atoms are replaced by magnetic Mn atoms, the Kondo effect, which is a celebrated example of strong correlations, emerges, develops coherence, and induces a hybridization energy gap. The magnetic doping and gap opening lead to rich extraordinary properties, as exemplified by the prominent DC Hall effects and resonance-enhanced terahertz Faraday rotation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA