Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Cell ; 177(5): 1280-1292.e20, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31031006

RESUMEN

Hyperactivity and disturbances of attention are common behavioral disorders whose underlying cellular and neural circuit causes are not understood. We report the discovery that striatal astrocytes drive such phenotypes through a hitherto unknown synaptic mechanism. We found that striatal medium spiny neurons (MSNs) triggered astrocyte signaling via γ-aminobutyric acid B (GABAB) receptors. Selective chemogenetic activation of this pathway in striatal astrocytes in vivo resulted in acute behavioral hyperactivity and disrupted attention. Such responses also resulted in upregulation of the synaptogenic cue thrombospondin-1 (TSP1) in astrocytes, increased excitatory synapses, enhanced corticostriatal synaptic transmission, and increased MSN action potential firing in vivo. All of these changes were reversed by blocking TSP1 effects. Our data identify a form of bidirectional neuron-astrocyte communication and demonstrate that acute reactivation of a single latent astrocyte synaptogenic cue alters striatal circuits controlling behavior, revealing astrocytes and the TSP1 pathway as therapeutic targets in hyperactivity, attention deficit, and related psychiatric disorders.


Asunto(s)
Astrocitos/metabolismo , Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Conducta Animal , Comunicación Celular , Neuronas/metabolismo , Transducción de Señal , Sinapsis/metabolismo , Animales , Astrocitos/patología , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno por Déficit de Atención con Hiperactividad/patología , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Femenino , Masculino , Ratones , Ratones Transgénicos , Neuronas/patología , Receptores de GABA-B/genética , Receptores de GABA-B/metabolismo , Sinapsis/genética , Trombospondina 1/genética , Trombospondina 1/metabolismo , Ácido gamma-Aminobutírico/genética , Ácido gamma-Aminobutírico/metabolismo
3.
Nature ; 627(8003): 358-366, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418885

RESUMEN

Astrocytes are heterogeneous glial cells of the central nervous system1-3. However, the physiological relevance of astrocyte diversity for neural circuits and behaviour remains unclear. Here we show that a specific population of astrocytes in the central striatum expresses µ-crystallin (encoded by Crym in mice and CRYM in humans) that is associated with several human diseases, including neuropsychiatric disorders4-7. In adult mice, reducing the levels of µ-crystallin in striatal astrocytes through CRISPR-Cas9-mediated knockout of Crym resulted in perseverative behaviours, increased fast synaptic excitation in medium spiny neurons and dysfunctional excitatory-inhibitory synaptic balance. Increased perseveration stemmed from the loss of astrocyte-gated control of neurotransmitter release from presynaptic terminals of orbitofrontal cortex-striatum projections. We found that perseveration could be remedied using presynaptic inhibitory chemogenetics8, and that this treatment also corrected the synaptic deficits. Together, our findings reveal converging molecular, synaptic, circuit and behavioural mechanisms by which a molecularly defined and allocated population of striatal astrocytes gates perseveration phenotypes that accompany neuropsychiatric disorders9-12. Our data show that Crym-positive striatal astrocytes have key biological functions within the central nervous system, and uncover astrocyte-neuron interaction mechanisms that could be targeted in treatments for perseveration.


Asunto(s)
Astrocitos , Cuerpo Estriado , Rumiación Cognitiva , Cristalinas mu , Animales , Humanos , Ratones , Astrocitos/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/fisiología , Edición Génica , Técnicas de Inactivación de Genes , Cristalinas mu/deficiencia , Cristalinas mu/genética , Cristalinas mu/metabolismo , Rumiación Cognitiva/fisiología , Transmisión Sináptica , Sistemas CRISPR-Cas , Neuronas Espinosas Medianas/metabolismo , Sinapsis/metabolismo , Corteza Prefrontal/citología , Corteza Prefrontal/metabolismo , Terminales Presinápticos/metabolismo , Inhibición Neural
4.
Nature ; 616(7958): 764-773, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046092

RESUMEN

Astrocytes and neurons extensively interact in the brain. Identifying astrocyte and neuron proteomes is essential for elucidating the protein networks that dictate their respective contributions to physiology and disease. Here we used cell-specific and subcompartment-specific proximity-dependent biotinylation1 to study the proteomes of striatal astrocytes and neurons in vivo. We evaluated cytosolic and plasma membrane compartments for astrocytes and neurons to discover how these cells differ at the protein level in their signalling machinery. We also assessed subcellular compartments of astrocytes, including end feet and fine processes, to reveal their subproteomes and the molecular basis of essential astrocyte signalling and homeostatic functions. Notably, SAPAP3 (encoded by Dlgap3), which is associated with obsessive-compulsive disorder (OCD) and repetitive behaviours2-8, was detected at high levels in striatal astrocytes and was enriched within specific astrocyte subcompartments where it regulated actin cytoskeleton organization. Furthermore, genetic rescue experiments combined with behavioural analyses and molecular assessments in a mouse model of OCD4 lacking SAPAP3 revealed distinct contributions of astrocytic and neuronal SAPAP3 to repetitive and anxiety-related OCD-like phenotypes. Our data define how astrocytes and neurons differ at the protein level and in their major signalling pathways. Moreover, they reveal how astrocyte subproteomes vary between physiological subcompartments and how both astrocyte and neuronal SAPAP3 mechanisms contribute to OCD phenotypes in mice. Our data indicate that therapeutic strategies that target both astrocytes and neurons may be useful to explore in OCD and potentially other brain disorders.


Asunto(s)
Astrocitos , Neuronas , Trastorno Obsesivo Compulsivo , Proteoma , Animales , Ratones , Astrocitos/metabolismo , Neuronas/metabolismo , Trastorno Obsesivo Compulsivo/metabolismo , Trastorno Obsesivo Compulsivo/fisiopatología , Proteoma/metabolismo , Biotinilación , Membrana Celular/metabolismo , Transducción de Señal , Citosol/metabolismo , Homeostasis , Fenotipo , Citoesqueleto de Actina/metabolismo
5.
Annu Rev Neurosci ; 42: 187-207, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31283899

RESUMEN

Astrocytes are morphologically complex, ubiquitous cells that are viewed as a homogeneous population tiling the entire central nervous system (CNS). However, this view has been challenged in the last few years with the availability of RNA sequencing, immunohistochemistry, electron microscopy, morphological reconstruction, and imaging data. These studies suggest that astrocytes represent a diverse population of cells and that they display brain area- and disease-specific properties and functions. In this review, we summarize these observations, emphasize areas where clear conclusions can be made, and discuss potential unifying themes. We also identify knowledge gaps that need to be addressed in order to exploit astrocyte diversity as a biological phenomenon of physiological relevance in the CNS. We thus provide a summary and a perspective on astrocyte diversity in the vertebrate CNS.


Asunto(s)
Astrocitos/clasificación , Animales , Astrocitos/fisiología , Astrocitos/ultraestructura , Biomarcadores , Señalización del Calcio , Compartimento Celular , Linaje de la Célula , Forma de la Célula , Tamaño de la Célula , Electrofisiología , Predicción , Ratones , Proteínas del Tejido Nervioso/análisis , Proteínas del Tejido Nervioso/fisiología , Neurogénesis , Vertebrados/anatomía & histología , Vertebrados/fisiología
6.
Nat Rev Neurosci ; 21(3): 121-138, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32042146

RESUMEN

Astrocytes are a type of glial cell that tile the CNS. They interact with multiple cell types, including neurons, glial cells and blood vessels, and are involved or implicated in brain disorders. Progress has been made in understanding astrocytes, but the field lacks detailed information concerning how they perform their multifarious functions, and how and when they influence the operations of the neural circuits with which they interact. One recognized bottleneck to progress has been the paucity of reliable tools with which to explore astrocytes within the adult vertebrate CNS in vivo. However, improved tools for molecular, genetic, morphological and physiological assessments have been developed recently or have been adapted from their original purposes to study neurons and are now being used to systematically document and interrogate astrocyte biology in vivo. These tools, their uses and limitations, and the insights that they afford are summarized in this Review.


Asunto(s)
Astrocitos/citología , Astrocitos/fisiología , Neurociencias/métodos , Animales , Señalización del Calcio , Electrofisiología/métodos , Perfilación de la Expresión Génica/métodos , Marcación de Gen/métodos , Humanos , Proteómica/métodos
7.
Nat Rev Neurosci ; 21(10): 524-534, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32879507

RESUMEN

The first issue of Nature Reviews Neuroscience was published 20 years ago, in 2000. To mark this anniversary, in this Viewpoint article we asked a selection of researchers from across the field who have authored pieces published in the journal in recent years for their thoughts on notable and interesting developments in neuroscience, and particularly in their areas of the field, over the past two decades. They also provide some thoughts on current lines of research and questions that excite them.


Asunto(s)
Neurociencias/historia , Historia del Siglo XXI , Humanos
8.
J Neurosci ; 41(21): 4556-4574, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-33903221

RESUMEN

Astrocytes exist throughout the CNS and affect neural circuits and behavior through intracellular Ca2+ signaling. Studying the function(s) of astrocyte Ca2+ signaling has proven difficult because of the paucity of tools to achieve selective attenuation. Based on recent studies, we generated and used male and female knock-in mice for Cre-dependent expression of mCherry-tagged hPMCA2w/b to attenuate astrocyte Ca2+ signaling in genetically defined cells in vivo (CalExflox mice for Calcium Extrusion). We characterized CalExflox mice following local AAV-Cre microinjections into the striatum and found reduced astrocyte Ca2+ signaling (∼90%) accompanied with repetitive self-grooming behavior. We also crossed CalExflox mice to astrocyte-specific Aldh1l1-Cre/ERT2 mice to achieve inducible global CNS-wide Ca2+ signaling attenuation. Within 6 d of induction in the bigenic mice, we observed significantly altered ambulation in the open field, disrupted motor coordination and gait, and premature lethality. Furthermore, with histologic, imaging, and transcriptomic analyses, we identified cellular and molecular alterations in the cerebellum following mCherry-tagged hPMCA2w/b expression. Our data show that expression of mCherry-tagged hPMCA2w/b with CalExflox mice throughout the CNS resulted in substantial attenuation of astrocyte Ca2+ signaling and significant behavioral alterations in adult mice. We interpreted these findings candidly in relation to the ability of CalEx to attenuate astrocyte Ca2+ signaling, with regards to additional mechanistic interpretations of the data, and their relation to past studies that reduced astrocyte Ca2+ signaling throughout the CNS. The data and resources provide complementary ways to interrogate the function(s) of astrocytes in multiple experimental scenarios.SIGNIFICANCE STATEMENT Astrocytes represent a significant fraction of all brain cells and tile the entire central nervous system. Unlike neurons, astrocytes lack propagated electrical signals. Instead, astrocytes are proposed to use diverse and dynamic intracellular Ca2+ signals to communicate with other cells. An open question concerns if and how astrocyte Ca2+ signaling regulates behavior in adult mice. We approached this problem by generating a new transgenic mouse line to achieve inducible astrocyte Ca2+ signaling attenuation in vivo We report our data with this mouse line and we interpret the findings candidly in relation to past studies and within the framework of different mechanistic interpretations.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Señalización del Calcio/fisiología , Animales , Femenino , Técnicas de Sustitución del Gen , Masculino , Ratones , Ratones Endogámicos C57BL
9.
J Neurosci ; 41(15): 3446-3461, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33637560

RESUMEN

Trauma can cause dysfunctional fear regulation leading some people to develop disorders, such as post-traumatic stress disorder (PTSD). The amygdala regulates fear, whereas PACAP (pituitary adenylate activating peptide) and PAC1 receptors are linked to PTSD symptom severity at genetic/epigenetic levels, with a strong link in females with PTSD. We discovered a PACAPergic projection from the basomedial amygdala (BMA) to the medial intercalated cells (mICCs) in adult mice. In vivo optogenetic stimulation of this pathway increased CFOS expression in mICCs, decreased fear recall, and increased fear extinction. Selective deletion of PAC1 receptors from the mICCs in females reduced fear acquisition, but enhanced fear generalization and reduced fear extinction in males. Optogenetic stimulation of the BMA-mICC PACAPergic pathway produced EPSCs in mICC neurons, which were enhanced by the PAC1 receptor antagonist, PACAP 6-38. Our findings show that mICCs modulate contextual fear in a dynamic and sex-dependent manner via a microcircuit containing the BMA and mICCs, and in a manner that was dependent on behavioral state.SIGNIFICANCE STATEMENT Traumatic stress can affect different aspects of fear behaviors, including fear learning, generalization of learned fear to novel contexts, how the fear of the original context is recalled, and how fear is reduced over time. While the amygdala has been studied for its role in regulation of different aspects of fear, the molecular circuitry of this structure is quite complex. In addition, aspects of fear can be modulated differently in males and females. Our findings show that a specific circuitry containing the neuropeptide PACAP and its receptor, PAC1, regulates various aspects of fear, including acquisition, generalization, recall, and extinction in a sexually dimorphic manner, characterizing a novel pathway that modulates traumatic fear.


Asunto(s)
Amígdala del Cerebelo/fisiología , Miedo , Neuronas/fisiología , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Trastornos por Estrés Postraumático/fisiopatología , Amígdala del Cerebelo/citología , Animales , Potenciales Postsinápticos Excitadores , Extinción Psicológica , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Optogenética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/genética , Factores Sexuales
10.
Nature ; 532(7598): 195-200, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-27027288

RESUMEN

Transected axons fail to regrow in the mature central nervous system. Astrocytic scars are widely regarded as causal in this failure. Here, using three genetically targeted loss-of-function manipulations in adult mice, we show that preventing astrocyte scar formation, attenuating scar-forming astrocytes, or ablating chronic astrocytic scars all failed to result in spontaneous regrowth of transected corticospinal, sensory or serotonergic axons through severe spinal cord injury (SCI) lesions. By contrast, sustained local delivery via hydrogel depots of required axon-specific growth factors not present in SCI lesions, plus growth-activating priming injuries, stimulated robust, laminin-dependent sensory axon regrowth past scar-forming astrocytes and inhibitory molecules in SCI lesions. Preventing astrocytic scar formation significantly reduced this stimulated axon regrowth. RNA sequencing revealed that astrocytes and non-astrocyte cells in SCI lesions express multiple axon-growth-supporting molecules. Our findings show that contrary to the prevailing dogma, astrocyte scar formation aids rather than prevents central nervous system axon regeneration.


Asunto(s)
Astrocitos/patología , Axones/fisiología , Sistema Nervioso Central/patología , Sistema Nervioso Central/fisiología , Cicatriz/patología , Modelos Biológicos , Regeneración Nerviosa , Animales , Sistema Nervioso Central/citología , Proteoglicanos Tipo Condroitín Sulfato/biosíntesis , Cicatriz/prevención & control , Femenino , Genómica , Ratones , Reproducibilidad de los Resultados , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/patología
11.
Glia ; 69(7): 1749-1766, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33694249

RESUMEN

Astrocytes are indispensable for proper neuronal functioning. Given the diverse needs of neuronal circuits and the variety of tasks astrocytes perform, the perceived homogeneous nature of astrocytes has been questioned. In the spinal dorsal horn, complex neuronal circuitries regulate the integration of sensory information of different modalities. The dorsal horn is organized in a distinct laminar manner based on termination patterns of high- and low-threshold afferent fibers and neuronal properties. Neurons in laminae I (L1) and II (L2) integrate potentially painful, nociceptive information, whereas neurons in lamina III (L3) and deeper laminae integrate innocuous, tactile information from the periphery. Sensory information is also integrated by an uncharacterized network of astrocytes. How these lamina-specific characteristics of neuronal circuits of the dorsal horn are of functional importance for properties of astrocytes is currently unknown. We addressed if astrocytes in L1, L2, and L3 of the upper dorsal horn of mice are differentially equipped for the needs of neuronal circuits that process sensory information of different modalities. We found that astrocytes in L1 and L2 were characterized by a higher density, higher expression of GFAP, Cx43, and GLAST and a faster coupling speed than astrocytes located in L3. L1 astrocytes were more responsive to Kir4.1 blockade and had higher levels of AQP4 compared to L3 astrocytes. In contrast, basic membrane properties, network formation, and somatic intracellular calcium signaling were similar in L1-L3 astrocytes. Our data indicate that the properties of spinal astrocytes are fine-tuned for the integration of nociceptive versus tactile information.


Asunto(s)
Astrocitos , Asta Dorsal de la Médula Espinal , Animales , Ratones , Neuronas , Células del Asta Posterior/fisiología , Médula Espinal
12.
Brain ; 141(7): 2032-2046, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30053174

RESUMEN

Spreading depolarization is assumed to be the mechanism of migraine with aura, which is accompanied by an initial predominant hyperaemic response followed by persistent vasoconstriction. Cerebral blood flow responses are impaired in patients and in experimental animals after spreading depolarization. Understanding the regulation of cortical blood vessels during and after spreading depolarization could help patients with migraine attacks, but our knowledge of these vascular mechanisms is still incomplete. Recent findings show that control of cerebral blood flow does not only occur at the arteriole level but also at capillaries. Pericytes are vascular mural cells that can constrict or relax around capillaries, mediating local cerebral blood flow control. They participate in the constriction observed during brain ischaemia and might be involved the disruption of the microcirculation during spreading depolarization. To further understand the regulation of cerebral blood flow in spreading depolarization, we examined penetrating arterioles and capillaries with respect to vascular branching order, pericyte location and pericyte calcium responses during somatosensory stimulation and spreading depolarization. Mice expressing a red fluorescent indicator and intravenous injections of FITC-dextran were used to visualize pericytes and vessels, respectively, under two-photon microscopy. By engineering a genetically encoded calcium indicator we could record calcium changes in both pericytes around capillaries and vascular smooth muscle cells around arterioles. We show that somatosensory stimulation evoked a decrease in cytosolic calcium in pericytes located on dilating capillaries, up to the second order capillaries. Furthermore, we show that prolonged vasoconstriction following spreading depolarization is strongest in first order capillaries, with a persistent increase in pericyte calcium. We suggest that the persistence of the 'spreading cortical oligaemia' in migraine could be caused by this constriction of cortical capillaries. After spreading depolarization, somatosensory stimulation no longer evoked changes in capillary diameter and pericyte calcium. Thus, calcium changes in pericytes located on first order capillaries may be a key determinant in local blood flow control and a novel vascular mechanism in migraine. We suggest that prevention or treatment of capillary constriction in migraine with aura, which is an independent risk factor for stroke, may be clinically useful.


Asunto(s)
Capilares/fisiología , Circulación Cerebrovascular/fisiología , Pericitos/fisiología , Animales , Arteriolas/fisiología , Encéfalo/irrigación sanguínea , Isquemia Encefálica/fisiopatología , Calcio/metabolismo , Modelos Animales de Enfermedad , Potenciales Evocados Somatosensoriales/fisiología , Humanos , Masculino , Ratones , Migraña con Aura/fisiopatología , Migraña con Aura/terapia , Accidente Cerebrovascular/fisiopatología , Vasoconstricción/fisiología
13.
J Neurosci ; 36(12): 3453-70, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-27013675

RESUMEN

Astrocytes tile the entire CNS, but their functions within neural circuits in health and disease remain incompletely understood. We used genetically encoded Ca(2+)and glutamate indicators to explore the rules for astrocyte engagement in the corticostriatal circuit of adult wild-type (WT) and Huntington's disease (HD) model mice at ages not accompanied by overt astrogliosis (at approximately postnatal days 70-80). WT striatal astrocytes displayed extensive spontaneous Ca(2+)signals, but did not respond to cortical stimulation, implying that astrocytes were largely disengaged from cortical input in healthy tissue. In contrast, in HD model mice, spontaneous Ca(2+)signals were significantly reduced in frequency, duration, and amplitude, but astrocytes responded robustly to cortical stimulation with evoked Ca(2+)signals. These action-potential-dependent astrocyte Ca(2+)signals were mediated by neuronal glutamate release during cortical stimulation, accompanied by prolonged extracellular glutamate levels near astrocytes and tightly gated by Glt1 glutamate transporters. Moreover, dysfunctional Ca(2+)and glutamate signaling that was observed in HD model mice was largely, but not completely, rescued by astrocyte specific restoration of Kir4.1, emphasizing the important contributions of K(+)homeostatic mechanisms that are known to be reduced in HD model mice. Overall, our data show that astrocyte engagement in the corticostriatal circuit is markedly altered in HD. Such prodromal astrocyte dysfunctions may represent novel therapeutic targets in HD and other brain disorders. SIGNIFICANCE STATEMENT: We report how early-onset astrocyte dysfunction without detectable astrogliosis drives disease-related processes in a mouse model of Huntington's disease (HD). The cellular mechanisms involve astrocyte homeostasis and signaling mediated by Kir4.1, Glt1, and Ca(2+) The data show that the rules for astrocyte engagement in a neuronal circuit are fundamentally altered in a brain disease caused by a known molecular defect and that fixing early homeostasis dysfunction remedies additional cellular deficits. Overall, our data suggest that key aspects of altered striatal function associated with HD may be triggered, at least in part, by dysfunctional astrocytes, thereby providing details of an emerging striatal microcircuit mechanism in HD. Such prodromal changes in astrocytes may represent novel therapeutic targets.


Asunto(s)
Astrocitos/metabolismo , Astrocitos/patología , Calcio/metabolismo , Cuerpo Estriado/patología , Ácido Glutámico/metabolismo , Enfermedad de Huntington/metabolismo , Animales , Cuerpo Estriado/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
14.
J Neurosci ; 36(34): 8902-20, 2016 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-27559172

RESUMEN

UNLABELLED: P2X4 receptors are ATP-gated cation channels that are widely expressed in the nervous system. To identify P2X4 receptor-expressing cells, we generated BAC transgenic mice expressing tdTomato under the control of the P2X4 receptor gene (P2rx4). We found sparse populations of tdTomato-positive neurons in most brain areas with patterns that matched P2X4 mRNA distribution. tdTomato expression within microglia was low but was increased by an experimental manipulation that triggered microglial activation. We found surprisingly high tdTomato expression in the hypothalamic arcuate nucleus (Arc) (i.e., within parts of the neural circuitry controlling feeding). Immunohistochemistry and genetic crosses of P2rx4 tdTomato mice with cell-specific GFP reporter lines showed that the tdTomato-expressing cells were mainly AgRP-NPY neurons and tanycytes. There was no electrophysiological evidence for functional expression of P2X4 receptors on AgRP-NPY neuron somata, but instead, we found clear evidence for functional presynaptic P2X4 receptor-mediated responses in terminals of AgRP-NPY neurons onto two of their postsynaptic targets (Arc POMC and paraventricular nucleus neurons), where ATP dramatically facilitated GABA release. The presynaptic responses onto POMC neurons, and the expression of tdTomato in AgRP-NPY neurons and tanycytes, were significantly decreased by food deprivation in male mice in a manner that was partially reversed by the satiety-related peptide leptin. Overall, we provide well-characterized tdTomato reporter mice to study P2X4-expressing cells in the brain, new insights on feeding-related regulation of presynaptic P2X4 receptor responses, and the rationale to explore extracellular ATP signaling in the control of feeding behaviors. SIGNIFICANCE STATEMENT: Cells expressing ATP-gated P2X4 receptors have proven problematic to identify and study in brain slice preparations because P2X4 expression is sparse. To address this limitation, we generated and characterized BAC transgenic P2rx4 tdTomato reporter mice. We report the distribution of tdTomato-expressing cells throughout the brain and particularly strong expression in the hypothalamic arcuate nucleus. Together, our studies provide a new, well-characterized tool with which to study P2X4 receptor-expressing cells. The electrophysiological studies enabled by this mouse suggest previously unanticipated roles for ATP and P2X4 receptors in the neural circuitry controlling feeding.


Asunto(s)
Encéfalo/citología , Ingestión de Alimentos/fisiología , Proteínas Luminiscentes/metabolismo , Neuronas/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Encéfalo/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Privación de Alimentos/fisiología , Ghrelina/farmacología , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Técnicas In Vitro , Leptina/farmacología , Lipopolisacáridos/farmacología , Proteínas Luminiscentes/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/metabolismo , Neuronas/efectos de los fármacos , Neuropéptido Y/metabolismo , Neurotransmisores/farmacología , Técnicas de Placa-Clamp , Inhibidores de Agregación Plaquetaria/farmacología , Proopiomelanocortina/metabolismo , ARN Mensajero/metabolismo , Receptores Purinérgicos P2X4/genética , Estadísticas no Paramétricas , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Ácido gamma-Aminobutírico/metabolismo
16.
J Neurosci ; 35(41): 13827-35, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26468182

RESUMEN

Initial biophysical studies on glial cells nearly 50 years ago identified these cells as being electrically silent. These first studies also demonstrated a large K(+) conductance, which led to the notion that glia may regulate extracellular K(+) levels homeostatically. This view has now gained critical support from the study of multiple disease models discussed herein. Dysfunction of a major astrocyte K(+) channel, Kir4.1, appears as an early pathological event underlying neuronal phenotypes in several neurodevelopmental and neurodegenerative diseases. An expanding list of other astrocyte ion channels, including the calcium-activated ion channel BEST-1, hemichannels, and two-pore domain K(+) channels, all contribute to astrocyte biology and CNS function and underpin new forms of crosstalk between neurons and glia. Once considered merely the glue that holds the brain together, it is now increasingly recognized that astrocytes contribute in several fundamental ways to neuronal function. Emerging new insights and future perspectives of this active research area are highlighted within. SIGNIFICANCE STATEMENT: The critical role of astrocyte potassium channels in CNS homeostasis has been reemphasized by recent studies conducted in animal disease models. Emerging evidence also supports the signaling role mediated by astrocyte ion channels such as BEST1, hemichannels, and two-pore channels, which enable astrocytes to interact with neurons and regulate synaptic transmission and plasticity. This minisymposium highlights recent developments and future perspectives of these research areas.


Asunto(s)
Homeostasis , Canales Iónicos/fisiología , Neuroglía/fisiología , Neuronas/fisiología , Transducción de Señal/fisiología , Animales , Biofisica , Humanos , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/fisiopatología
17.
Proc Natl Acad Sci U S A ; 110(18): 7494-9, 2013 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-23592720

RESUMEN

The sense of hearing is remarkable for its auditory dynamic range, which spans more than 10(12) in acoustic intensity. The mechanisms that enable the cochlea to transduce high sound levels without damage are of key interest, particularly with regard to the broad impact of industrial, military, and recreational auditory overstimulation on hearing disability. We show that ATP-gated ion channels assembled from P2X2 receptor subunits in the cochlea are necessary for the development of temporary threshold shift (TTS), evident in auditory brainstem response recordings as sound levels rise. In mice null for the P2RX2 gene (encoding the P2X2 receptor subunit), sustained 85-dB noise failed to elicit the TTS that wild-type (WT) mice developed. ATP released from the tissues of the cochlear partition with elevation of sound levels likely activates the broadly distributed P2X2 receptors on epithelial cells lining the endolymphatic compartment. This purinergic signaling is supported by significantly greater noise-induced suppression of distortion product otoacoustic emissions derived from outer hair cell transduction and decreased suprathreshold auditory brainstem response input/output gain in WT mice compared with P2RX2-null mice. At higher sound levels (≥95 dB), additional processes dominated TTS, and P2RX2-null mice were more vulnerable than WT mice to permanent hearing loss due to hair cell synapse disruption. P2RX2-null mice lacked ATP-gated conductance across the cochlear partition, including loss of ATP-gated inward current in hair cells. These data indicate that a significant component of TTS represents P2X2 receptor-dependent purinergic hearing adaptation that underpins the upper physiological range of hearing.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Adenosina Trifosfato/farmacología , Activación del Canal Iónico/efectos de los fármacos , Canales Iónicos/metabolismo , Sonido , Animales , Umbral Auditivo/efectos de los fármacos , Cóclea/efectos de los fármacos , Cóclea/metabolismo , Cóclea/fisiopatología , Pérdida Auditiva Provocada por Ruido/metabolismo , Pérdida Auditiva Provocada por Ruido/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ruido , Receptores Purinérgicos P2X2/deficiencia
18.
J Biol Chem ; 289(21): 14600-11, 2014 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-24706758

RESUMEN

The C terminus of AMPA-type glutamate receptor (AMPAR) GluA1 subunits contains several phosphorylation sites that regulate AMPAR activity and trafficking at excitatory synapses. Although many of these sites have been extensively studied, little is known about the signaling mechanisms regulating GluA1 phosphorylation at Thr-840. Here, we report that neuronal depolarization in hippocampal slices induces a calcium and protein phosphatase 1/2A-dependent dephosphorylation of GluA1 at Thr-840 and a nearby site at Ser-845. Despite these similarities, inhibitors of NMDA-type glutamate receptors and protein phosphatase 2B prevented depolarization-induced Ser-845 dephosphorylation but had no effect on Thr-840 dephosphorylation. Instead, depolarization-induced Thr-840 dephosphorylation was prevented by blocking voltage-gated calcium channels, indicating that distinct Ca(2+) sources converge to regulate GluA1 dephosphorylation at Thr-840 and Ser-845 in separable ways. Results from immunoprecipitation/depletion assays indicate that Thr-840 phosphorylation inhibits protein kinase A (PKA)-mediated increases in Ser-845 phosphorylation. Consistent with this, PKA-mediated increases in AMPAR currents, which are dependent on Ser-845 phosphorylation, were inhibited in HEK-293 cells expressing a Thr-840 phosphomimetic version of GluA1. Conversely, mimicking Ser-845 phosphorylation inhibited protein kinase C phosphorylation of Thr-840 in vitro, and PKA activation inhibited Thr-840 phosphorylation in hippocampal slices. Together, the regulation of Thr-840 and Ser-845 phosphorylation by distinct sources of Ca(2+) influx and the presence of inhibitory interactions between these sites highlight a novel mechanism for conditional regulation of AMPAR phosphorylation and function.


Asunto(s)
Neuronas/metabolismo , Receptores AMPA/metabolismo , Serina/metabolismo , Treonina/metabolismo , Animales , Sitios de Unión , Western Blotting , Calcio/metabolismo , Canales de Calcio/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células HEK293 , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Masculino , Toxinas Marinas , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ácido Ocadaico/farmacología , Oxazoles/farmacología , Fosforilación/efectos de los fármacos , Proteína Quinasa C/metabolismo , Proteína Fosfatasa 1/antagonistas & inhibidores , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Receptores AMPA/genética
19.
J Neurosci ; 33(24): 10143-53, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23761909

RESUMEN

Astrocytes are found throughout the brain where they make extensive contacts with neurons and synapses. Astrocytes are known to display intracellular Ca(2+) signals and release signaling molecules such as D-serine into the extracellular space. However, the role(s) of astrocyte Ca(2+) signals in hippocampal long-term potentiation (LTP), a form of synaptic plasticity involved in learning and memory, remains unclear. Here, we explored a recently discovered novel TRPA1 channel-mediated transmembrane Ca(2+) flux pathway in astrocytes. Specifically, we determined whether block or genetic deletion of TRPA1 channels affected LTP of Schaffer collateral to CA1 pyramidal neuron synapses. Using pharmacology, TRPA1(-/-) mice, imaging, electrophysiology, and D-serine biosensors, our data indicate that astrocyte TRPA1 channels contribute to basal Ca(2+) levels and are required for constitutive D-serine release into the extracellular space, which contributes to NMDA receptor-dependent LTP. The findings have broad relevance for the study of astrocyte-neuron interactions by demonstrating how TRPA1 channel-mediated fluxes contribute to astrocyte basal Ca(2+) levels and neuronal function via constitutive D-serine release.


Asunto(s)
Astrocitos/metabolismo , Calcio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , Potenciación a Largo Plazo/fisiología , Microdominios de Membrana/metabolismo , Serina/metabolismo , Acetanilidas/farmacología , Animales , Astrocitos/citología , Astrocitos/ultraestructura , Región CA3 Hipocampal/citología , Células Cultivadas , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas HSP90 de Choque Térmico , Técnicas In Vitro , Receptores de Inositol 1,4,5-Trifosfato/deficiencia , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Potenciación a Largo Plazo/genética , Microdominios de Membrana/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Inmunoelectrónica , Técnicas de Placa-Clamp , Purinas/farmacología , ARN Mensajero/metabolismo , ARN Interferente Pequeño/farmacología , beta-Alanina/farmacología , Ácido gamma-Aminobutírico/farmacología
20.
Proc Natl Acad Sci U S A ; 108(33): 13800-5, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21808018

RESUMEN

P2X receptors are trimeric cation channels with widespread roles in health and disease. The recent crystal structure of a P2X4 receptor provides a 3D view of their topology and architecture. A key unresolved issue is how ions gain access to the pore, because the structure reveals two different pathways within the extracellular domain. One of these is the central pathway spanning the entire length of the extracellular domain and covering a distance of ≈70 Å. The second consists of three lateral portals, adjacent to the membrane and connected to the transmembrane pore by short tunnels. Here, we demonstrate the preferential use of the lateral portals. Owing to their favorable diameters and equivalent spacing, the lateral portals split the task of ion supply threefold and minimize an ion's diffusive path before it succumbs to transmembrane electrochemical gradients.


Asunto(s)
Iones/metabolismo , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/fisiología , Adenosina Trifosfato , Difusión , Humanos , Activación del Canal Iónico , Potenciales de la Membrana/fisiología , Modelos Moleculares , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA