Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Cell Int ; 23(1): 182, 2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37635248

RESUMEN

Across the world, oral cancer is a prevalent tumor. Over the years, both its mortality and incidence have grown. Oral cancer metastasis is a complex process involving cell invasion, migration, proliferation, and egress from cancer tissue either by lymphatic vessels or blood vessels. MicroRNAs (miRNAs) are essential short non-coding RNAs, which can act either as tumor suppressors or as oncogenes to control cancer development. Cancer metastasis is a multi-step process, in which miRNAs can inhibit or stimulate metastasis at all stages, including epithelial-mesenchymal transition, migration, invasion, and colonization, by targeting critical genes in these pathways. On the other hand, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), two different types of non-coding RNAs, can regulate cancer metastasis by affecting gene expression through cross-talk with miRNAs. We reviewed the scientific literature (Google Scholar, Scopus, and PubMed) for the period 2000-2023 to find reports concerning miRNAs and lncRNA/circRNA-miRNA-mRNA networks, which control the spread of oral cancer cells by affecting invasion, migration, and metastasis. According to these reports, miRNAs are involved in the regulation of metastasis pathways either by directly or indirectly targeting genes associated with metastasis. Moreover, circRNAs and lncRNAs can induce or suppress oral cancer metastasis by acting as competing endogenous RNAs to inhibit the effect of miRNA suppression on specific mRNAs. Overall, non-coding RNAs (especially miRNAs) could help to create innovative therapeutic methods for the control of oral cancer metastases.

2.
J Adv Periodontol Implant Dent ; 16(1): 36-43, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39027204

RESUMEN

Background: Non-ionizing electromagnetic field (EMF) exposure therapies are non-invasive and safe treatment options that can potentially change available treatments. In this review, we examined the applications of such therapies in dental implant surgery by conducting a systematic review. Methods: A comprehensive search of several international electronic databases was conducted from inception to December 14, 2022. This review included interventional studies that evaluated the advantages of adjunctive magnetic or combined EMFs on dental implants compared to conventional treatments. Results: From a total of 1695 studies, 12 preclinical and clinical studies were selected, discussing EMF-based treatments for enhancing implant stability, osteogenesis, and osseointegration, as well as alleviating post-implant surgery manifestations. Almost all studies on maxillary and mandibular implant stability showed beneficial effects of non-ionizing EMF in humans. Most studies evaluating osteogenesis and osseointegration indicated that EMF exposure could accelerate bone repair and peri-implant bone formation and increase bone contact ratios, bone volume fraction (bone volume/total volume), trabecular number, and trabecular thickness. Only two clinical studies examined the effect of EMF on pain and swelling after dental implant surgery, with one finding that subjects exposed to EMF used analgesics fewer times and in far lower doses than the control group and the other finding no significant difference in reducing these outcomes between the groups. Conclusion: Overall, devices that deliver non-ionizing low-level EMF can be a viable and widely recognized non-invasive adjuvant therapy for attaining success and better outcomes after dental implant surgery due to their efficacy, safety, and short exposure time.

3.
J Oral Biosci ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39059718

RESUMEN

OBJECTIVES: To examine the potential of intra-articular administration of mesenchymal stem cells (MSCs) derived from bone marrow or adipose tissue to mitigate synovial inflammation in a rat model of temporomandibular joint (TMJ) osteoarthritis (OA). METHODS: In this experimental study, 40 rats were divided into 4 groups: (1) Control group; (2) Untreated TMJ-OA group; (3) TMJ-OA group treated with bone marrow-derived MSCs; (4) TMJ-OA group treated with adipose tissue-derived MSCs. The TMJ-OA model was established by inducing synovial inflammation through the intra-articular administration of complete Freund's adjuvant (CFA). After 8 weeks of TMJ-OA establishment, the animals were sacrificed and each mandibular condyle was extracted for histological evaluation. RESULTS: The untreated TMJ-OA group had significantly higher synovial inflammation, as indicated microscopically by higher grades of synovial membrane hyperplasia and adhesion, vascular vasodilation, and fibrin deposition than the control group (p < 0.001). Both TMJ-OA groups treated with MSCs had lower grades of synovial inflammation and less severe synovitis than the untreated TMJ-OA group (p < 0.001). The TMJ-OA group treated with adipose tissue-derived MSCs showed lower grades of synovial membrane hyperplasia and higher grades of fibrin deposition than the that treated with bone marrow-derived MSCs (p < 0.001). Other indicators of synovial inflammation and synovitis severity were comparable between the two treatment groups. CONCLUSIONS: Administration of CFA to the TMJ-OA rat model augmented synovial inflammation. Intra-articular administration of MSCs derived from either bone marrow or adipose tissue attenuated the microscopic manifestations of this inflammation, indicating the therapeutic potential of this treatment for TMJ-OA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA