Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38904895

RESUMEN

The rapid rise of antimicrobial resistance (AMR) is a global concern, being triggered by the overuse or misuse of antibiotics in poultry farming sector. We evaluated Lactococcus lactis subsp. lactis BIONCL17752 strain, and characterized its probiotic potential to endure hostile gastrointestinal conditions. Genome sequencing analysis revealed probiotics traits, and gene clusters involved in bacteriocins, lactococcin A, and sactipeptides production. The absence of genes for antibiotic resistance, virulence, and biogenic amine production indicates the potential of probiotic strain. The BIONCL17752 strain was explored for antibiotic-free feed supplement for growth promotor in broiler chicken. The feed supplemented with 4 × 109 CFU/kg of probiotic strain, in combination with various concentrations of fructooligosaccharides (FOS) 1.0, 2.5, and 5.0 kg/tonne in starter, grower, and finisher diets, respectively. A significant improvement of body weight 152 to 171 g/bird (p < 0.05), and a low feed conversion ratio (FCR) of 1.62, was achieved without using synthetic antibiotics for growth promotion. The results of biochemical, hematological, and histological examinations showed normal features, indicating that the treatment had no harmful effects on the bird's health. Reduced levels of cholesterol, triglycerides, high-density lipoprotein (HDL), and low-density lipoprotein (LDL) in serum are an indication of the health benefits for the treated birds. Microbial community analysis of fecal samples of poultry birds exhibited a higher abundance of Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria, and Fusobacteria. Probiotic treatment resulted in reduced Firmicutes and increased Bacteroidetes (F/B ratio) in the broiler's gut which highlights the benefits of probiotic dietary supplements. Importantly, the probiotic-fed group exhibited a high abundance of carbohydrate-active enzymes (CAZyme) such as glycoside hydrolases (GH), glycoside transferases (GT), and carbohydrate-binding module (CBM) hydrolases which are essential for the degradation of complex sugar molecules. The probiotic potential of the BIONCL17752 strain contributes to broilers' health by positively affecting intestinal microbiota, achieving optimal growth, and lowering mortality, demonstrating the economic benefits of probiotic treatment in organic poultry farming.

2.
ACS Omega ; 8(29): 25727-25738, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37521601

RESUMEN

The receptor for advanced glycation end products (RAGE) is a transmembrane protein that interacts with its ligands, advanced glycation end products (AGEs). AGEs are elevated in diabetes and diabetic complications, leading to increased oxidative stress and activation of pro-inflammatory pathways facilitated by AGE-RAGE signaling. Polymorphisms in the RAGE gene can potentially affect AGE-RAGE interaction and its downstream signaling, which plays a crucial role in the progression of diabetes and its complications. In this study, we used nanopore sequencing for genotyping of RAGE polymorphism and identified a maximum number of 33 polymorphisms, including two previously unreported novel mutations in a cohort of healthy, type 2 diabetics without nephropathy and type 2 diabetics with nephropathy in order to identify associations. Two novel RAGE polymorphisms in the intron 8 and 3'UTR region at genomic locations 32181834 and 32181132, respectively, were detected with a low frequency. For four previously reported polymorphisms, cross-validation by PCR-RFLP showed 99.75% concordance with nanopore sequencing. Analysis of genotype distribution and allele frequencies revealed that five single nucleotide polymorphisms, i.e., rs1800625, rs3131300, rs3134940, rs2070600, and rs9391855, were associated with an increased risk for type 2 diabetes.

3.
J Infect Public Health ; 16(8): 1290-1300, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37331277

RESUMEN

BACKGROUND: Modern response to pandemics, critical for effective public health measures, is shaped by the availability and integration of diverse epidemiological outbreak data. Tracking variants of concern (VOC) is integral to understanding the evolution of SARS-CoV-2 in space and time, both at the local level and global context. This potentially generates actionable information when integrated with epidemiological outbreak data. METHODS: A city-wide network of researchers, clinicians, and pathology diagnostic laboratories was formed for genome surveillance of COVID-19 in Pune, India. The genomic landscapes of 10,496 sequenced samples of SARS-CoV-2 driving peaks of infection in Pune between December-2020 to March-2022, were determined. As a modern response to the pandemic, a "band of five" outbreak data analytics approach was used. This integrated the genomic data (Band 1) of the virus through molecular phylogenetics with key outbreak data including sample collection dates and case numbers (Band 2), demographics like age and gender (Band 3-4), and geospatial mapping (Band 5). RESULTS: The transmission dynamics of VOCs in 10,496 sequenced samples identified B.1.617.2 (Delta) and BA(x) (Omicron formerly known as B.1.1.529) variants as drivers of the second and third peaks of infection in Pune. Spike Protein mutational profiling during pre and post-Omicron VOCs indicated differential rank ordering of high-frequency mutations in specific domains that increased the charge and binding properties of the protein. Time-resolved phylogenetic analysis of Omicron sub-lineages identified a highly divergent BA.1 from Pune in addition to recombinant X lineages, XZ, XQ, and XM. CONCLUSIONS: The band of five outbreak data analytics approach, which integrates five different types of data, highlights the importance of a strong surveillance system with high-quality meta-data for understanding the spatiotemporal evolution of the SARS-CoV-2 genome in Pune. These findings have important implications for pandemic preparedness and could be critical tools for understanding and responding to future outbreaks.


Asunto(s)
COVID-19 , Pandemias , Humanos , COVID-19/epidemiología , SARS-CoV-2/genética , Filogenia , India/epidemiología , Genómica
4.
Am J Trop Med Hyg ; 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35189595

RESUMEN

Human babesiosis is a rare disease, caused by Babesia species and commonly transmitted by tick bite. Although human babesiosis is known to be asymptomatic in immunocompetent hosts, clinical cases of severe babesiosis have been reported from splenectomized or immunocompromised individuals. To our knowledge, only one case of human babesiosis in India has been previously reported. Here, we report a case of severe babesiosis with high parasitemia (∼70%) in a 30-year-old asplenic farmer. The patient presented with fever, yellowish discoloration of skin, oliguria, and anemia; he eventually developed multiorgan failure syndrome and died. Peripheral blood films were prepared and used to confirm the presence of piroplasms by microscopy. Total DNA isolated from blood was used for 18S ribosomal RNA gene fragment amplification by polymerase chain reaction, which was subject to Sanger sequencing. Although 18S sequence indicated that the Babesia species infecting the patient was similar to that of other Babesia species originating from wild mammals, species identification could not be done. Phylogenetic analysis revealed that the patient-derived pathogen is distinct because it forms a separate clade in the cladogram.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA