Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Lasers Med Sci ; 37(5): 2457-2470, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35067818

RESUMEN

We assessed the impact of photobiomodulation (PBM) plus adipose-derived stem cells (ASCs) during the anabolic and catabolic stages of bone healing in a rat model of a critical size femoral defect (CSFD) that was filled with a decellularized bone matrix (DBM). Stereological analysis and gene expression levels of bone morphogenetic protein 4 (BMP4), Runt-related transcription factor 2 (RUNX2), and stromal cell-derived factor 1 (SDF1) were determined. There were six groups of rats. Group 1 was the untreated control or DBM. Study groups 2-6 were treated as follows: ASC (ASC transplanted into DBM, then implanted in the CSFD); PBM (CSFD treated with PBM); irradiated ASC (iASC) (ASCs preconditioned with PBM, then transplanted into DBM, and implanted in the CSFD); ASC + PBM (ASCs transplanted into DBM, then implanted in the CSFD, followed by PBM administration); and iASC + PBM (the same as iASC, except CSFDs were exposed to PBM). At the anabolic step, all treatment groups had significantly increased trabecular bone volume (TBV) (24.22%) and osteoblasts (83.2%) compared to the control group (all, p = .000). However, TBV in group iASC + PBM groups were superior to the other groups (97.48% for osteoblast and 58.8% for trabecular bone volume) (all, p = .000). The numbers of osteocytes in ASC (78.2%) and iASC + PBM (30%) groups were remarkably higher compared to group control (both, p = .000). There were significantly higher SDF (1.5-fold), RUNX2 (1.3-fold), and BMP4 (1.9-fold) mRNA levels in the iASC + PBM group compared to the control and some of the treatment groups. At the catabolic step of bone healing, TBV increased significantly in PBM (30.77%), ASC + PBM (32.27%), and iASC + PBM (35.93%) groups compared to the control group (all, p = .000). There were significantly more osteoblasts and osteocytes in ASC (71.7%, 62.02%) (p = .002, p = .000); PBM (82.54%, 156%), iASC (179%, 23%), and ASC + PBM (108%, 110%) (all, p = .000), and iASC + PBM (79%, 100.6%) (p = .001, p = .000) groups compared to control group. ASC preconditioned with PBM in vitro plus PBM in vivo significantly increased stereological parameters and SDF1, RUNX2, and BMP4 mRNA expressions during bone healing in a CSFD model in rats.


Asunto(s)
Huesos , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Terapia por Luz de Baja Intensidad , Células Madre , Tejido Adiposo/citología , Animales , Proteína Morfogenética Ósea 4 , Huesos/lesiones , Quimiocina CXCL12 , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Expresión Génica , Humanos , ARN Mensajero , Ratas
2.
Biochem Biophys Res Commun ; 531(2): 105-111, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32778332

RESUMEN

We assessed the combined impacts of human demineralized bone matrix (hDBM) scaffold, adipose-derived stem cells (hADS), and photobiomodulation (PBM) on bone repair of a critical size femoral defect (CSFD) in 72 rats. The rats were divided into six groups: control (group 1); ADS (group 2 - ADS transplanted into hDBM); PBM (group 3 - PBM-treated CSFDs); ADS + PBM in vivo (group 4 - ADS transplanted into hDBM and the CSFDs were treated with PBM in vivo); ADS + PBM in vitro (group 5 - ADS were treated with PBM in vitro, then seeded into hDBM); and ADS + PBM in vitro+in vivo (group 6 - PBM-treated ADS were seeded into hDBM, and the CSFDs were treated with PBM in vivo. At the anabolic phase (2 weeks after surgery), bone strength parameters of the groups 5, 6, and 4 were statistically greater than the control, ADS, and PBM in vivo groups (all, p = 0.000). Computed tomography (CT) scans during the catabolic phase (6 weeks after surgery) of bone healing revealed that the Hounsfield unit (HU) of CSFD in the groups 2 (p = 0.000) and 5 (p = 0.019) groups were statistically greater than the control group. The groups 5, 4, and 6 had significantly increased bone strength parameters compared with the PBM in vivo, control, and ADS groups (all, p = 0.000). The group 5 was statistically better than the groups 4, and 6 (both, p = 0.000). In vitro preconditioned of hADS with PBM significantly increased bone repair in a rat model of CSFD in vivo.


Asunto(s)
Tejido Adiposo/citología , Fémur/patología , Fémur/efectos de la radiación , Terapia por Luz de Baja Intensidad , Células Madre/citología , Células Madre/efectos de la radiación , Cicatrización de Heridas/efectos de la radiación , Animales , Biomarcadores/metabolismo , Fenómenos Biomecánicos , Matriz Ósea/efectos de la radiación , Matriz Ósea/ultraestructura , Supervivencia Celular/efectos de la radiación , Módulo de Elasticidad , Humanos , Masculino , Ratas Wistar
3.
Biochem Biophys Res Commun ; 530(1): 173-180, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32828282

RESUMEN

We investigated the impact of human demineralized bone matrix (hDBM) plus adipose-derived stem cells (hADS) plus photobiomodulation (PBM) on a critical-sized femoral defect (CSFD) in ovariectomy induced osteoporosis in rats. There were 6 groups as follows. In group 1 (control, C), only CSFDs were created. Groups 2-6 were implanted with DBM into the CSFD (DBM-CSFD). In group 2 (S), only DBM was transplanted into the CSFD. In group 3 (S + PBM), the DBM-CSFDs were treated with PBM. In group 4, the DBM-CSFDs were treated with alendronate (S + ALN). In group 5, ADSs were seeded into DBM-CSFD (S + ADS). In group 6, ADSs were seeded into DBM-CSFD and the CSFDs were treated with PBM (S + PBM + ADS). At week eight (catabolic phase of bone repair), the S + ALN, S + PBM + ADS, S + PBM, and S + ADS groups all had significantly increased bone strength than the S group (ANOVA, p = 0.000). The S + PBM, S + PBM + ADS, and S + ADS groups had significantly increased Hounsfield unit than the S group (ANOVA, p = 0.000). ALN, ADS, and PBM significantly increased healed bone strength in an experimental model of DBM-treated CSFD in the catabolic phase of bone healing in osteoporotic rats. However, ALN alone and PBM plus ADS were superior to the other protocols.


Asunto(s)
Matriz Ósea/trasplante , Terapia por Luz de Baja Intensidad , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Osteoporosis/terapia , Animales , Línea Celular , Modelos Animales de Enfermedad , Femenino , Fémur/lesiones , Fémur/patología , Humanos , Células Madre Mesenquimatosas/citología , Osteoporosis/patología , Ratas , Ratas Wistar
4.
Photobiomodul Photomed Laser Surg ; 41(10): 539-548, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37788453

RESUMEN

Objective: In this study, we aimed to explore the role of MicroRNA-26 in photobiomodulation (PBM)- and adipose-derived stem cell (ADS)-based healing of critical-sized foot fractures in a rat model. Background: PBM and ADS treatments are relatively invasive methods for treating bone defects. Specific and oriented cellular and molecular functions can be induced by applying an appropriate type of PBM and ADS treatment. Methods: A critical size foot defect (CSFD) is induced in femoral bones of 24 rats. Then, a human demineralized bone matrix scaffold (hDBMS) was engrafted into all CSFDs. The rats were randomly allocated into four groups (n = 6): (1) control (hDBMS); (2) hDBMS+human ADSs (hADSs), hADSs engrafted into CSFDs; (3) hDBMS+PBM, CSFD exposed to PBM (810 nm wavelength, 1.2 J/cm2 energy density); and (4) hDBMS+(hADSs+PBM), hADSs implanted into the CSFD and then exposed to PBM. At 42 days after CSFD induction, the rats were killed, and the left CSFD was removed for mechanical compression tests and the right CSFD was removed for molecular and histological studies. Results: The results indicate that miRNA-26a, BMP, SMAD, RUNX, and OSTREX had higher expression in the treated groups than in the control group. Further, the biomechanical and histological properties of CSFDs in treated groups were improved compared with the control group. Correlation tests revealed a positive relationship between microRNA and improved biomechanical and cellular parameters of CSFDs in the rat model. Conclusions: We concluded that the MicroRNA-26 signaling pathway probably plays a significant role in the hADS-, PBM-, and hADS+PBM-based healing of CSFDs in rats. Clinical Trial Registration number: IR.SBMU.MSP.REC.1398.980.


Asunto(s)
Terapia por Luz de Baja Intensidad , MicroARNs , Animales , Ratas , Terapia por Luz de Baja Intensidad/métodos , MicroARNs/genética , Células Madre , Cicatrización de Heridas
5.
Photobiomodul Photomed Laser Surg ; 40(4): 261-272, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35452299

RESUMEN

Objective: This study examined the use of photobiomodulation (PBM) plus adipose-derived stem cells (ASCs) to enhance the osteogenic properties of demineralized bone matrix (DBM) scaffold in a critical size femoral defect (CSFD) of ovariectomy-induced osteoporotic (OVX) rats. Background: PBM could be used as a unique strategy to enhance the osteogenic potential of DBMs seeded with ASCs. Materials and methods: The OVX rats with a CSFD were divided into six groups: (1) Control (C); (2) DBM scaffold alone (S); (3) S+PBM; (4) S+alendronate; (5) S+ASC; (6) S+PBM+ASC. Stereological analysis, real-time polymerase chain reaction (RT-PCR), and cone-beam computed tomography (CBCT) were performed after euthanization at 4 and 8 weeks postimplantation surgery. Results: In the 8th week, Groups 4 and 6 showed a greatly high new trabecular bone volume than the scaffold group (all, p = 0.009). The CBCT data demonstrated that the CSFD was significantly smaller in the two, three, and six groups relative to the control group (p = 0.01, p = 0.000, and p = 0.000, respectively). RT-PCR revealed that Groups 3 and 6 had higher messenger RNA levels of osteocalcin (OC) and osteoprotegerin (OPG) compared with the control group (p = 0.05). Group 6 had significantly lower expression of receptor activator of nuclear factor-κB ligand (RANKL) compared with the control group (p = 0.02). Conclusions: The combination of DBM plus PBM plus ASC, as well as DBM plus PBM significantly improved the healing of CSFD in OVX rats, and affected the expression of OPG, OC, and RANKL genes.


Asunto(s)
Osteogénesis , Células Madre , Adipocitos , Tejido Adiposo , Animales , Femenino , Humanos , Ovariectomía , Ratas
6.
J Lasers Med Sci ; 13: e10, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35996492

RESUMEN

Introduction: Long bone segmental deficiencies are challenging complications to treat. Hereby, the effects of the scaffold derived from the human demineralized bone matrix (hDBMS) plus human adipose stem cells (hADSs) plus photobiomodulation (PBM) (in vitro and or in vivo) on the catabolic step of femoral bone repair in rats with critical size femoral defects (CDFDs) were evaluated with stereology and high stress load (HSL) assessment methods. Methods: hADSs were exposed to PBM in vitro; then, the mixed influences of hDBMS+hADS+PBM on CSFDs were evaluated. CSFDs were made on both femurs; then hDBMSs were engrafted into both CSFDs of all rats. There were 6 groups (G)s: G1 was the control; in G2 (hADS), hADSs only were engrafted into hDBMS of CSFD; in G3 (PBM) only PBM therapy for CSFD was provided; in G4 (hADS+PBM in vivo), seeded hADSs on hDBMS of CSFDs were radiated with a laser in vivo; in G5 (hADSs+PBM under in vitro condition), hADSs in a culture system were radiated with a laser, then transferred on hDBMS of CSFDs; and in G6 (hADS+PBM in conditions of in vivo and in vitro), laser-exposed hADSs were transplanted on hDBMS of CSFDs, and then CSFDs were exposed to a laser in vivo. Results: Groups 4, 5, and 6 meaningfully improved HSLs of CSFD in comparison with groups 3, 1, and 2 (all, P=0.001). HSL of G5 was significantly more than G4 and G6 (both, P=0.000). Gs 6 and 4 significantly increased new bone volumes of CSFD compared to Gs 2 (all, P=0.000) and 1 (P=0.001 & P=0.003 respectively). HSL of G 1 was significantly lower than G5 (P=0.026). Conclusion: HSLs of CSFD in rats that received treatments of hDBMS plus hADS plus PBM were significantly higher than treatments with hADS and PBM alone and control groups.

7.
J Lasers Med Sci ; 12: e41, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34733764

RESUMEN

Introduction: The ability of simultaneous treatment of critical-sized femoral defects (CSFDs) with photobiomodulation (PBM) and demineralized bone matrix (DBM) with or without seeded adipose-derived stem cells (ASCs) to induce bone reconstruction in ovariectomized induced osteoporotic (OVX) rats was investigated. Methods: The OVX rats with CSFD were arbitrarily separated into 6 groups: control, scaffold (S, DBM), S + PBM, S + alendronate (ALN), S + ASCs, and S + PBM + ASCs. Each group was assessed by cone beam computed tomography (CBCT) and histological examinations. Results: In the fourth week, CBCT and histological analyses revealed that the largest volume of new bone formed in the S + PBM and S + PBM + ASC groups. The S + PBM treatment relative to the S and S + ALN treatments remarkably reduced the CSFD (Mann-Whitney test, P = 0.009 and P = 0.01). Furthermore, S + PBM + ASCs treatment compared to the S and S + ALN treatments significantly decreased CSFD (Mann Whitney test, P = 0.01). In the eighth week, CBCT analysis showed that extremely enhanced bone regeneration occurred in the CSFD of the S + PBM group. Moreover, the CSFD in the S + PBM group was substantially smaller than S, S + ALN and S + ASCs groups (Mann Whitney test, P = 0.01, P = 0.02 and P = 0.009). Histological observations showed more new bone formation in the treated CSFD of S + PBM + ASCs and S + PBM groups. Conclusion: The PBM plus DBM with or without ASCs significantly enhanced bone healing in the CSFD in OVX rats compared to control, DBM alone, and ALN plus DBM groups. The PBM plus DBM with or without ASCs significantly decreased the CSFD area compared to either the solo DBM or ALN plus DBM treatments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA