Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861668

RESUMEN

Chimeric antigen receptor (CAR) T-cell therapies have demonstrated transformative efficacy in treating B-cell malignancies. However, high cost and manufacturing complexities hinder their widespread use. To overcome these hurdles, we have developed the VivoVecTM platform, a lentiviral vector capable of generating CAR T-cells in vivo. Here we describe the incorporation of T cell activation and costimulatory signals onto the surface of VivoVecTM particles (VVPs) in the form of a multi-domain fusion protein and show enhanced in vivo transduction and improved CAR-T cell antitumor functionality. Furthermore, in the absence of lymphodepleting chemotherapy, administration of VVPs into non-human primates resulted in the robust generation of anti-CD20 CAR T-cells and the complete depletion of B cells for more than 10 weeks. These data validate the VivoVecTM platform in a translationally relevant model and support its transition into human clinical testing, offering a paradigm shift in the field of CAR T-cell therapies.

2.
Blood ; 143(21): 2201-2216, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38447038

RESUMEN

ABSTRACT: Fanconi anemia (FA) is an inherited DNA repair disorder characterized by bone marrow (BM) failure, developmental abnormalities, myelodysplasia, leukemia, and solid tumor predisposition. Allogeneic hematopoietic stem cell transplantation (allo-HSCT), a mainstay treatment, is limited by conditioning regimen-related toxicity and graft-versus-host disease (GVHD). Antibody-drug conjugates (ADCs) targeting hematopoietic stem cells (HSCs) can open marrow niches permitting donor stem cell alloengraftment. Here, we report that single dose anti-mouse CD45-targeted ADC (CD45-ADC) facilitated stable, multilineage chimerism in 3 distinct FA mouse models representing 90% of FA complementation groups. CD45-ADC profoundly depleted host stem cell enriched Lineage-Sca1+cKit+ cells within 48 hours. Fanca-/- recipients of minor-mismatched BM and single dose CD45-ADC had peripheral blood (PB) mean donor chimerism >90%; donor HSCs alloengraftment was verified in secondary recipients. In Fancc-/- and Fancg-/- recipients of fully allogeneic grafts, PB mean donor chimerism was 60% to 80% and 70% to 80%, respectively. The mean percent donor chimerism in BM and spleen mirrored PB results. CD45-ADC-conditioned mice did not have clinical toxicity. A transient <2.5-fold increase in hepatocellular enzymes and mild-to-moderate histopathological changes were seen. Under GVHD allo-HSCT conditions, wild-type and Fanca-/- recipients of CD45-ADC had markedly reduced GVHD lethality compared with lethal irradiation. Moreover, single dose anti-human CD45-ADC given to rhesus macaque nonhuman primates on days -6 or -10 was at least as myeloablative as lethal irradiation. These data suggest that CD45-ADC can potently promote donor alloengraftment and hematopoiesis without significant toxicity or severe GVHD, as seen with lethal irradiation, providing strong support for clinical trial considerations in highly vulnerable patients with FA.


Asunto(s)
Anemia de Fanconi , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Inmunoconjugados , Antígenos Comunes de Leucocito , Animales , Anemia de Fanconi/terapia , Ratones , Enfermedad Injerto contra Huésped/patología , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Acondicionamiento Pretrasplante/métodos , Trasplante Homólogo , Ratones Endogámicos C57BL , Ratones Noqueados
3.
Blood ; 142(1): 33-43, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-36821766

RESUMEN

Hematopoietic stem cells (HSCs) are assumed to be rare, infrequently dividing, long-lived cells not involved in immediate recovery after transplantation. Here, we performed unprecedented high-density clonal tracking in nonhuman primates and found long-term persisting HSC clones to actively contribute during early neutrophil recovery, and to be the main source of blood production as early as 50 days after transplantation. Most surprisingly, we observed a rapid decline in the number of unique HSC clones, while persisting HSCs expanded, undergoing symmetric divisions to create identical siblings and formed clonal pools ex vivo as well as in vivo. In contrast to the currently assumed model of hematopoietic reconstitution, we provide evidence for contribution of HSCs in short-term recovery as well as symmetric expansion of individual clones into pools. These findings provide novel insights into HSC biology, informing the design of HSC transplantation and gene therapy studies.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Animales , Células Clonales , Hematopoyesis
4.
Blood ; 141(17): 2085-2099, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36800642

RESUMEN

Sickle cell disease (SCD) is a monogenic disease caused by a nucleotide mutation in the ß-globin gene. Current gene therapy studies are mainly focused on lentiviral vector-mediated gene addition or CRISPR/Cas9-mediated fetal globin reactivation, leaving the root cause unfixed. We developed a vectorized prime editing system that can directly repair the SCD mutation in hematopoietic stem cells (HSCs) in vivo in a SCD mouse model (CD46/Townes mice). Our approach involved a single intravenous injection of a nonintegrating, prime editor-expressing viral vector into mobilized CD46/Townes mice and low-dose drug selection in vivo. This procedure resulted in the correction of ∼40% of ßS alleles in HSCs. On average, 43% of sickle hemoglobin was replaced by adult hemoglobin, thereby greatly mitigating the SCD phenotypes. Transplantation in secondary recipients demonstrated that long-term repopulating HSCs were edited. Highly efficient target site editing was achieved with minimal generation of insertions and deletions and no detectable off-target editing. Because of its simplicity and portability, our in vivo prime editing approach has the potential for application in resource-poor countries where SCD is prevalent.


Asunto(s)
Anemia de Células Falciformes , Edición Génica , Ratones , Animales , Edición Génica/métodos , Sistemas CRISPR-Cas , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Células Madre Hematopoyéticas , Hemoglobina Falciforme/genética
5.
Mol Ther ; 32(4): 1000-1015, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38414243

RESUMEN

Adoptive cell therapy (ACT) using T cells expressing chimeric antigen receptors (CARs) is an area of intense investigation in the treatment of malignancies and chronic viral infections. One of the limitations of ACT-based CAR therapy is the lack of in vivo persistence and maintenance of optimal cell function. Therefore, alternative strategies that increase the function and maintenance of CAR-expressing T cells are needed. In our studies using the humanized bone marrow/liver/thymus (BLT) mouse model and nonhuman primate (NHP) model of HIV infection, we evaluated two CAR-based gene therapy approaches. In the ACT approach, we used cytokine enhancement and preconditioning to generate greater persistence of anti-HIV CAR+ T cells. We observed limited persistence and expansion of anti-HIV CAR T cells, which led to minimal control of the virus. In our stem cell-based approach, we modified hematopoietic stem/progenitor cells (HSPCs) with anti-HIV CAR to generate anti-HIV CAR T cells in vivo. We observed CAR-expressing T cell expansion, which led to better plasma viral load suppression. HSPC-derived CAR cells in infected NHPs showed superior trafficking and persistence in multiple tissues. Our results suggest that a stem cell-based CAR T cell approach may be superior in generating long-term persistence and functional antiviral responses against HIV infection.


Asunto(s)
Infecciones por VIH , VIH-1 , Receptores Quiméricos de Antígenos , Ratones , Animales , Linfocitos T , Receptores Quiméricos de Antígenos/genética , Células Madre Hematopoyéticas , Inmunoterapia Adoptiva
6.
Mol Ther ; 32(5): 1238-1251, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38414244

RESUMEN

Chimeric antigen receptor (CAR) T cell therapies have demonstrated immense clinical success for B cell and plasma cell malignancies. We tested their impact on the viral reservoir in a macaque model of HIV persistence, comparing the functions of CD20 CAR T cells between animals infected with simian/human immunodeficiency virus (SHIV) and uninfected controls. We focused on the potential of this approach to disrupt B cell follicles (BCFs), exposing infected cells for immune clearance. In SHIV-infected animals, CAR T cells were highly functional, with rapid expansion and trafficking to tissue-associated viral sanctuaries, including BCFs and gut-associated lymphoid tissue (GALT). CD20 CAR T cells potently ablated BCFs and depleted lymph-node-associated follicular helper T (TFH) cells, with complete restoration of BCF architecture and TFH cells following CAR T cell contraction. BCF ablation decreased the splenic SHIV reservoir but was insufficient for effective reductions in systemic viral reservoirs. Although associated with moderate hematologic toxicity, CD20 CAR T cells were well tolerated in SHIV-infected and control animals, supporting the feasibility of this therapy in people living with HIV with underlying B cell malignancies. Our findings highlight the unique ability of CD20 CAR T cells to safely and reversibly unmask TFH cells within BCF sanctuaries, informing future combinatorial HIV cure strategies designed to augment antiviral efficacy.


Asunto(s)
Antígenos CD20 , Linfocitos B , Modelos Animales de Enfermedad , Infecciones por VIH , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Antígenos CD20/metabolismo , Antígenos CD20/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Virus de la Inmunodeficiencia de los Simios/inmunología , Inmunoterapia Adoptiva/métodos , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/terapia , Infecciones por VIH/terapia , Infecciones por VIH/inmunología , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Humanos , Linfocitos T/inmunología , Linfocitos T/metabolismo , VIH-1/inmunología , Carga Viral , Macaca mulatta
7.
Blood ; 139(11): 1743-1759, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-34986233

RESUMEN

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative treatment of patients with nonmalignant or malignant blood disorders. Its success has been limited by graft-versus-host disease (GVHD). Current systemic nontargeted conditioning regimens mediate tissue injury and potentially incite and amplify GVHD, limiting the use of this potentially curative treatment beyond malignant disorders. Minimizing systemic nontargeted conditioning while achieving alloengraftment without global immune suppression is highly desirable. Antibody-drug-conjugates (ADCs) targeting hematopoietic cells can specifically deplete host stem and immune cells and enable alloengraftment. We report an anti-mouse CD45-targeted-ADC (CD45-ADC) that facilitates stable murine multilineage donor cell engraftment. Conditioning with CD45-ADC (3 mg/kg) was effective as a single agent in both congenic and minor-mismatch transplant models resulting in full donor chimerism comparable to lethal total body irradiation (TBI). In an MHC-disparate allo-HSCT model, pretransplant CD45-ADC (3 mg/kg) combined with low-dose TBI (150 cGy) and a short course of costimulatory blockade with anti-CD40 ligand antibody enabled 89% of recipients to achieve stable alloengraftment (mean value: 72%). When CD45-ADC was combined with pretransplant TBI (50 cGy) and posttransplant rapamycin, cyclophosphamide (Cytoxan), or a JAK inhibitor, 90% to 100% of recipients achieved stable chimerism (mean: 77%, 59%, 78%, respectively). At a higher dose (5 mg/kg), CD45-ADC as a single agent was sufficient for rapid, high-level multilineage chimerism sustained through the 22 weeks observation period. Therefore, CD45-ADC has the potential utility to confer the benefit of fully myeloablative conditioning but with substantially reduced toxicity when given as a single agent or at lower doses in conjunction with reduced-intensity conditioning.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Inmunoconjugados , Animales , Quimerismo , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Inmunoconjugados/toxicidad , Ratones , Acondicionamiento Pretrasplante/métodos
8.
Mol Ther ; 31(10): 2901-2913, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37550965

RESUMEN

Hematopoietic stem cell (HSC) gene therapy is currently performed on CD34+ hematopoietic stem and progenitor cells containing less than 1% true HSCs and requiring a highly specialized infrastructure for cell manufacturing and transplantation. We have previously identified the CD34+CD90+ subset to be exclusively responsible for short- and long-term engraftment. However, purification and enrichment of this subset is laborious and expensive. HSC-specific delivery agents for the direct modification of rare HSCs are currently lacking. Here, we developed novel targeted viral vectors to specifically transduce CD90-expressing HSCs. Anti-CD90 single chain variable fragments (scFvs) were engineered onto measles- and VSV-G-pseudotyped lentiviral vectors that were knocked out for native targeting. We further developed a custom hydrodynamic titration methodology to assess the loading of surface-engineered capsids, measure antigen recognition of the scFv, and predict the performance on cells. Engineered vectors formed with minimal impairment in the functional titer, maintained their ability to fuse with the target cells, and showed highly specific recognition of CD90 on cells ex vivo. Most important, targeted vectors selectively transduced human HSCs with secondary colony-forming potential. Our novel HSC-targeted viral vectors have the potential to significantly enhance the feasibility of ex vivo gene therapy and pave the way for future in vivo applications.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Humanos , Antígenos CD34/genética , Terapia Genética/métodos , Vectores Genéticos/genética , Células Madre Hematopoyéticas
9.
Mol Ther ; 31(4): 1059-1073, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36760126

RESUMEN

We aim to develop an in vivo hematopoietic stem cell (HSC) gene therapy approach for persistent control/protection of HIV-1 infection based on the stable expression of a secreted decoy protein for HIV receptors CD4 and CCR5 (eCD4-Ig) from blood cells. HSCs in mice and a rhesus macaque were mobilized from the bone marrow and transduced by an intravenous injection of HSC-tropic, integrating HDAd5/35++ vectors expressing rhesus eCD4-Ig. In vivo HSC transduction/selection resulted in stable serum eCD4-Ig levels of ∼100 µg/mL (mice) and >20 µg/mL (rhesus) with half maximal inhibitory concentrations (IC50s) of 1 µg/mL measured by an HIV neutralization assay. After simian-human-immunodeficiency virus D (SHIV.D) challenge of rhesus macaques injected with HDAd-eCD4-Ig or a control HDAd5/35++ vector, peak plasma viral load levels were ∼50-fold lower in the eCD4-Ig-expressing animal. Furthermore, the viral load was lower in tissues with the highest eCD4-Ig expression, specifically the spleen and lymph nodes. SHIV.D challenge triggered a selective expansion of transduced CD4+CCR5+ cells, thereby increasing serum eCD4-Ig levels. The latter, however, broke immune tolerance and triggered anti-eCD4-Ig antibody responses, which could have contributed to the inability to eliminate SHIV.D. Our data will guide us in the improvement of the in vivo approach. Clearly, our conclusions need to be validated in larger animal cohorts.


Asunto(s)
Infecciones por VIH , VIH-1 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Humanos , Animales , Ratones , Macaca mulatta , Virus de la Inmunodeficiencia de los Simios/genética , Células Madre Hematopoyéticas , Síndrome de Inmunodeficiencia Adquirida del Simio/terapia
10.
Mol Ther ; 31(3): 801-809, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36518078

RESUMEN

The clinical impact of any therapy requires the product be safe and effective. Gammaretroviral vectors pose several unique risks, including inadvertent exposure to replication competent retrovirus (RCR) that can arise during vector manufacture. The US FDA has required patient monitoring for RCR, and the National Gene Vector Biorepository is an NIH resource that has assisted eligible investigators in meeting this requirement. To date, we have found no evidence of RCR in 338 pre-treatment and 1,595 post-treatment blood samples from 737 patients associated with 60 clinical trials. Most samples (75%) were obtained within 1 year of treatment, and samples as far out as 9 years after treatment were analyzed. The majority of trials (93%) were cancer immunotherapy, and 90% of the trials used vector products produced with the PG13 packaging cell line. The data presented here provide further evidence that current manufacturing methods generate RCR-free products and support the overall safety profile of retroviral gene therapy.


Asunto(s)
Retroviridae , Replicación Viral , Humanos , Retroviridae/genética , Vectores Genéticos/genética , Línea Celular , Terapia Genética/efectos adversos
11.
Blood ; 137(3): 323-335, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-32967009

RESUMEN

CD19-targeted chimeric antigen receptor-engineered (CD19 CAR) T-cell therapy has shown significant efficacy for relapsed or refractory (R/R) B-cell malignancies. Yet, CD19 CAR T cells fail to induce durable responses in most patients. Second infusions of CD19 CAR T cells (CART2) have been considered as a possible approach to improve outcomes. We analyzed data from 44 patients with R/R B-cell malignancies (acute lymphoblastic leukemia [ALL], n = 14; chronic lymphocytic leukemia [CLL], n = 9; non-Hodgkin lymphoma [NHL], n = 21) who received CART2 on a phase 1/2 trial (NCT01865617) at our institution. Despite a CART2 dose increase in 82% of patients, we observed a low incidence of severe toxicity after CART2 (grade ≥3 cytokine release syndrome, 9%; grade ≥3 neurotoxicity, 11%). After CART2, complete response (CR) was achieved in 22% of CLL, 19% of NHL, and 21% of ALL patients. The median durations of response after CART2 in CLL, NHL, and ALL patients were 33, 6, and 4 months, respectively. Addition of fludarabine to cyclophosphamide-based lymphodepletion before the first CAR T-cell infusion (CART1) and an increase in the CART2 dose compared with CART1 were independently associated with higher overall response rates and longer progression-free survival after CART2. We observed durable CAR T-cell persistence after CART2 in patients who received cyclophosphamide and fludarabine (Cy-Flu) lymphodepletion before CART1 and a higher CART2 compared with CART1 cell dose. The identification of 2 modifiable pretreatment factors independently associated with better outcomes after CART2 suggests strategies to improve in vivo CAR T-cell kinetics and responses after repeat CAR T-cell infusions, and has implications for the design of trials of novel CAR T-cell products after failure of prior CAR T-cell immunotherapies.


Asunto(s)
Antígenos CD19/metabolismo , Inmunoterapia Adoptiva , Leucemia de Células B/terapia , Leucemia Linfocítica Crónica de Células B/terapia , Linfoma no Hodgkin/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Adulto , Anciano , Proliferación Celular , Ciclofosfamida/uso terapéutico , Síndrome de Liberación de Citoquinas/complicaciones , Femenino , Humanos , Leucemia de Células B/inmunología , Leucemia Linfocítica Crónica de Células B/inmunología , Linfoma no Hodgkin/inmunología , Masculino , Persona de Mediana Edad , Análisis Multivariante , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Supervivencia sin Progresión , Linfocitos T/inmunología , Resultado del Tratamiento , Vidarabina/análogos & derivados , Vidarabina/uso terapéutico
12.
Mol Ther ; 30(6): 2186-2198, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35240320

RESUMEN

Clinical applications of hematopoietic stem cell (HSC) gene editing are limited due to their complex and expensive logistics. HSC editing is commonly performed ex vivo using electroporation and requires good manufacturing practice (GMP) facilities, similar to bone marrow transplant centers. In vivo gene editing could overcome this limitation; however, electroporation is unsuitable for systemic in vivo applications to HSCs. Here we evaluated polymer-based nanoparticles (NPs), which could also be used for in vivo administration, for the delivery of mRNA and nucleases to human granulocyte colony-stimulating factor (GCSF)-mobilized CD34+ cells. NP-mediated ex vivo delivery showed no toxicity, and the efficiency was directly correlated with the charge of the NPs. In a side-by-side comparison with electroporation, NP-mediated gene editing allowed for a 3-fold reduction in the amount of reagents, with similar efficiency. Furthermore, we observed enhanced engraftment potential of human HSCs in the NSG mouse xenograft model using NPs. Finally, mRNA- and nuclease-loaded NPs were successfully lyophilized for storage, maintaining their transfection potential after rehydration. In conclusion, we show that polymer-based NP delivery of mRNA and nucleases has the potential to overcome current limitations of HSC gene editing. The predictable transfection efficiency, low toxicity, and ability to lyophilize NPs will greatly enhance the portability and provide a highly promising platform for HSC gene therapy.


Asunto(s)
Edición Génica , Células Madre Hematopoyéticas , Nanopartículas , Animales , Antígenos CD34 , Trasplante de Células Madre Hematopoyéticas , Humanos , Indicadores y Reactivos , Ratones , Polímeros , ARN Mensajero
14.
Blood ; 136(15): 1722-1734, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32614969

RESUMEN

Chimeric antigen receptor (CAR) T cells targeting CD19+ hematologic malignancies have rapidly emerged as a promising, novel therapy. In contrast, results from the few CAR T-cell studies for infectious diseases such as HIV-1 have been less convincing. These challenges are likely due to the low level of antigen present in antiretroviral therapy (ART)-suppressed patients in contrast to those with hematologic malignancies. Using our well-established nonhuman primate model of ART-suppressed HIV-1 infection, we tested strategies to overcome these limitations and challenges. We first optimized CAR T-cell production to maintain central memory subsets, consistent with current clinical paradigms. We hypothesized that additional exogenous antigen might be required in an ART-suppressed setting to aid expansion and persistence of CAR T cells. Thus, we studied 4 simian/HIV-infected, ART-suppressed rhesus macaques infused with virus-specific CD4CAR T cells, followed by supplemental infusion of cell-associated HIV-1 envelope (Env). Env boosting led to significant and unprecedented expansion of virus-specific CAR+ T cells in vivo; after ART treatment interruption, viral rebound was significantly delayed compared with controls (P = .014). In 2 animals with declining CAR T cells, rhesusized anti-programmed cell death protein 1 (PD-1) antibody was administered to reverse PD-1-dependent immune exhaustion. Immune checkpoint blockade triggered expansion of exhausted CAR T cells and concordantly lowered viral loads to undetectable levels. These results show that supplemental cell-associated antigen enables robust expansion of CAR T cells in an antigen-sparse environment. To our knowledge, this is the first study to show expansion of virus-specific CAR T cells in infected, suppressed hosts, and delay/control of viral recrudescence.


Asunto(s)
Antígenos Virales/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Huésped Inmunocomprometido , Receptores de Antígenos de Linfocitos T/inmunología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Terapia Antirretroviral Altamente Activa/efectos adversos , Terapia Antirretroviral Altamente Activa/métodos , Modelos Animales de Enfermedad , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Inhibidores de Puntos de Control Inmunológico/farmacología , Proteínas de Punto de Control Inmunitario/genética , Proteínas de Punto de Control Inmunitario/metabolismo , Macaca mulatta , Virus de la Inmunodeficiencia de los Simios/inmunología , Linfocitos T/efectos de los fármacos
15.
Mol Ther ; 29(11): 3140-3152, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34601132

RESUMEN

Although genome editing technologies have the potential to revolutionize the way we treat human diseases, barriers to successful clinical implementation remain. Increasingly, preclinical large animal models are being used to overcome these barriers. In particular, the immunogenicity and long-term safety of novel gene editing therapeutics must be evaluated rigorously. However, short-lived small animal models, such as mice and rats, cannot address secondary pathologies that may arise years after a gene editing treatment. Likewise, immunodeficient mouse models by definition lack the ability to quantify the host immune response to a novel transgene or gene-edited locus. Large animal models, including dogs, pigs, and non-human primates (NHPs), bear greater resemblance to human anatomy, immunology, and lifespan and can be studied over longer timescales with clinical dosing regimens that are more relevant to humans. These models allow for larger scale and repeated blood and tissue sampling, enabling greater depth of study and focus on rare cellular subsets. Here, we review current progress in the development and evaluation of novel genome editing therapies in large animal models, focusing on applications in human immunodeficiency virus 1 (HIV-1) infection, cancer, and genetic diseases including hemoglobinopathies, Duchenne muscular dystrophy (DMD), hypercholesterolemia, and inherited retinal diseases.


Asunto(s)
Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Edición Génica , Terapia Genética , Animales , Estudios Clínicos como Asunto , Técnicas de Transferencia de Gen , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/terapia , Terapia Genética/métodos , Terapia Genética/tendencias , Vectores Genéticos/genética , Humanos
16.
Br J Haematol ; 192(1): 33-49, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32506752

RESUMEN

Genome editing therapies represent a significant advancement in next-generation, precision medicine for the management of haematological diseases, and CRISPR/Cas9 has to date been the most successful implementation platform. From discovery in bacteria and archaea over three decades ago, through intensive basic research and pre-clinical development phases involving the modification of therapeutically relevant cell types, CRISPR/Cas9 genome editing is now being investigated in ongoing clinic trials. Despite the widespread enthusiasm brought by this new technology, significant challenges remain before genome editing can be routinely recommended and implemented in the clinic. These include risks of genotoxicity resulting from off-target DNA cleavage or chromosomal rearrangement, and suboptimal efficacy of homology-directed repair editing strategies, which thus limit therapeutic options. Practical hurdles such as high costs and inaccessibility to patients outside specialised centres must also be addressed. Future improvements in this rapidly developing field should circumvent current limitations with novel editing platforms and with the simplification of clinical protocols using in vivo delivery of editing reagents.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Terapia Genética/métodos , Enfermedades Hematológicas/terapia , Animales , Enfermedades Hematológicas/genética , Humanos
17.
Blood ; 134(16): 1298-1311, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31416800

RESUMEN

Therapeutic gene delivery to hematopoietic stem cells (HSCs) holds great potential as a life-saving treatment of monogenic, oncologic, and infectious diseases. However, clinical gene therapy is severely limited by intrinsic HSC resistance to modification with lentiviral vectors (LVs), thus requiring high doses or repeat LV administration to achieve therapeutic gene correction. Here we show that temporary coapplication of the cyclic resveratrol trimer caraphenol A enhances LV gene delivery efficiency to human and nonhuman primate hematopoietic stem and progenitor cells with integrating and nonintegrating LVs. Although significant ex vivo, this effect was most dramatically observed in human lineages derived from HSCs transplanted into immunodeficient mice. We further show that caraphenol A relieves restriction of LV transduction by altering the levels of interferon-induced transmembrane (IFITM) proteins IFITM2 and IFITM3 and their association with late endosomes, thus augmenting LV core endosomal escape. Caraphenol A-mediated IFITM downregulation did not alter the LV integration pattern or bias lineage differentiation. Taken together, these findings compellingly demonstrate that the pharmacologic modification of intrinsic immune restriction factors is a promising and nontoxic approach for improving LV-mediated gene therapy.


Asunto(s)
Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/virología , Proteínas de la Membrana/efectos de los fármacos , Resveratrol/farmacología , Transducción Genética/métodos , Animales , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Vectores Genéticos , Xenoinjertos , Humanos , Lentivirus , Proteínas de la Membrana/metabolismo , Ratones , Transporte de Proteínas/efectos de los fármacos
18.
Blood ; 133(15): 1652-1663, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30728140

RESUMEN

Autologous T cells engineered to express a CD19-specific chimeric antigen receptor (CAR) have produced impressive minimal residual disease-negative (MRD-negative) complete remission (CR) rates in patients with relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL). However, the factors associated with durable remissions after CAR T-cell therapy have not been fully elucidated. We studied patients with relapsed/refractory B-ALL enrolled in a phase 1/2 clinical trial evaluating lymphodepletion chemotherapy followed by CD19 CAR T-cell therapy at our institution. Forty-five (85%) of 53 patients who received CD19 CAR T-cell therapy and were evaluable for response achieved MRD-negative CR by high-resolution flow cytometry. With a median follow-up of 30.9 months, event-free survival (EFS) and overall survival (OS) were significantly better in the patients who achieved MRD-negative CR compared with those who did not (median EFS, 7.6 vs 0.8 months; P < .0001; median OS, 20.0 vs 5.0 months; P = .014). In patients who achieved MRD-negative CR by flow cytometry, absence of the index malignant clone by IGH deep sequencing was associated with better EFS (P = .034). Stepwise multivariable modeling in patients achieving MRD-negative CR showed that lower prelymphodepletion lactate dehydrogenase concentration (hazard ratio [HR], 1.38 per 100 U/L increment increase), higher prelymphodepletion platelet count (HR, 0.74 per 50 000/µL increment increase), incorporation of fludarabine into the lymphodepletion regimen (HR, 0.25), and allogeneic hematopoietic cell transplantation (HCT) after CAR T-cell therapy (HR, 0.39) were associated with better EFS. These data allow identification of patients at higher risk of relapse after CAR T-cell immunotherapy who might benefit from consolidation strategies such as allogeneic HCT. This trial was registered at www.clinicaltrials.gov as #NCT01865617.


Asunto(s)
Antígenos CD19/inmunología , Inmunoterapia Adoptiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Inducción de Remisión/métodos , Adulto , Supervivencia sin Enfermedad , Femenino , Trasplante de Células Madre Hematopoyéticas , Humanos , Depleción Linfocítica , Masculino , Persona de Mediana Edad , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidad , Receptores Quiméricos de Antígenos , Terapia Recuperativa/métodos , Adulto Joven
19.
Blood ; 133(17): 1876-1887, 2019 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-30782611

RESUMEN

Factors associated with durable remission after CD19 chimeric antigen receptor (CAR)-modified T-cell immunotherapy for aggressive B-cell non-Hodgkin lymphoma (NHL) have not been identified. We report multivariable analyses of factors affecting response and progression-free survival (PFS) in patients with aggressive NHL treated with cyclophosphamide and fludarabine lymphodepletion followed by 2 × 106 CD19-directed CAR T cells/kg. The best overall response rate was 51%, with 40% of patients achieving complete remission. The median PFS of patients with aggressive NHL who achieved complete remission was 20.0 months (median follow-up, 26.9 months). Multivariable analysis of clinical and treatment characteristics, serum biomarkers, and CAR T-cell manufacturing and pharmacokinetic data showed that a lower pre-lymphodepletion serum lactate dehydrogenase (LDH) level and a favorable cytokine profile, defined as serum day 0 monocyte chemoattractant protein-1 (MCP-1) and peak interleukin-7 (IL-7) concentrations above the median, were associated with better PFS. MCP-1 and IL-7 concentrations increased after lymphodepletion, and higher intensity of cyclophosphamide and fludarabine lymphodepletion was associated with higher probability of a favorable cytokine profile. PFS was superior in patients who received high-intensity lymphodepletion and achieved a favorable cytokine profile compared with those who received the same intensity of lymphodepletion without achieving a favorable cytokine profile. Even in high-risk patients with pre-lymphodepletion serum LDH levels above normal, a favorable cytokine profile after lymphodepletion was associated with a low risk of a PFS event. Strategies to augment the cytokine response to lymphodepletion could be tested in future studies of CD19 CAR T-cell immunotherapy for aggressive B-cell NHL. This trial was registered at www.clinicaltrials.gov as #NCT01865617.


Asunto(s)
Antígenos CD19/inmunología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Inmunoterapia/métodos , Depleción Linfocítica/métodos , Linfoma no Hodgkin/mortalidad , Receptores de Antígenos de Linfocitos T/inmunología , Terapia Combinada , Ciclofosfamida/administración & dosificación , Femenino , Estudios de Seguimiento , Humanos , Linfoma no Hodgkin/inmunología , Linfoma no Hodgkin/patología , Linfoma no Hodgkin/terapia , Masculino , Persona de Mediana Edad , Pronóstico , Tasa de Supervivencia , Vidarabina/administración & dosificación , Vidarabina/análogos & derivados
20.
J Immunol ; 203(3): 718-724, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31189571

RESUMEN

CD4 T cells from HIV-1 infected patients die at excessive rates compared to those from uninfected patients, causing immunodeficiency. We previously identified a dominant negative ligand that antagonizes the TRAIL-dependent pathway of cell death, which we called TRAILshort. Because the TRAIL pathway has been implicated in CD4 T cell death occurring during HIV-1 infection, we used short hairpin RNA knockdown, CRISPR deletion, or Abs specific for TRAILshort to determine the effect of inhibiting TRAILshort on the outcome of experimental acute HIV infection in vitro. Strikingly, all three approaches to TRAILshort deletion/inhibition enhanced HIV-induced death of both infected and uninfected human CD4 T cells. Thus, TRAILshort impacts T cell dynamics during HIV infection, and inhibiting TRAILshort causes more HIV-infected and uninfected bystander cells to die. TRAILshort is, therefore, a host-derived, host-adaptive mechanism to limit the effects of TRAIL-induced cell death. Further studies on the effects of TRAILshort in other disease states are warranted.


Asunto(s)
Apoptosis/genética , Linfocitos T CD4-Positivos/inmunología , Infecciones por VIH/patología , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Anticuerpos/inmunología , Recuento de Linfocito CD4 , Linfocitos T CD4-Positivos/citología , Línea Celular Tumoral , Supervivencia Celular , Técnicas de Inactivación de Genes , VIH-1/crecimiento & desarrollo , Humanos , Células Jurkat , Interferencia de ARN , ARN Interferente Pequeño/genética , Ligando Inductor de Apoptosis Relacionado con TNF/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA