Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Am Chem Soc ; 145(51): 27933-27938, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38088870

RESUMEN

Generally, the relationship between the observed circular dichroism and the enantiomeric excess in chiral systems (CD-ee dependence) is linear. While positive nonlinear behavior has often been reported in the past, examples of negative nonlinear (NN) behavior in CD-ee dependence are rare and not well understood. Here, we present a strong NN CD-ee dependence within polycrystalline thin films of BINOL by using second-harmonic-generation circular dichroism (SHG-CD) and commercial CD spectroscopy studies. Theoretical calculations, microscopy, and FTIR studies are employed to further clarify the underlying cause of this observation. This behavior is attributed to the changing supramolecular chirality of the system. Systems exhibiting NN CD-ee dependence hold promise for highly accurate enantiomeric excess characterization, which is essential for the refinement of enantio-separating and -purifying processes in pharmaceuticals, asymmetric catalysis, and chiral sensing. Our findings suggest that a whole class of single-species systems, i.e., racemate crystals, might possess NN CD-ee dependence and thus provide us a vast playground to better understand and exploit this phenomenon.

2.
Opt Express ; 30(9): 15669-15684, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35473282

RESUMEN

Time-resolved photoelectron spectroscopy provides a versatile tool for investigating electron dynamics in gaseous, liquid, and solid samples on sub-femtosecond time scales. The extraction of information from spectrograms recorded with the attosecond streak camera remains a difficult challenge. Common algorithms are highly specialized and typically computationally heavy. In this work, we apply deep neural networks to map from streaking traces to near-infrared pulses as well as electron wavepackets and extensively benchmark our results on simulated data. Additionally, we illustrate domain-shift to real-world data. We also attempt to quantify the model predictive uncertainty. Our deep neural networks display competitive retrieval quality and superior tolerance against noisy data conditions, while reducing the computational time by orders of magnitude.

3.
J Am Chem Soc ; 142(7): 3384-3391, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32070107

RESUMEN

Vibrational excitations provoked by coupling effects during charge transport through single molecules are intrinsic energy dissipation phenomena, in close analogy to electron-phonon coupling in solids. One fundamental challenge in molecular electronics is the quantitative determination of charge-vibrational (electron-phonon) coupling for single-molecule junctions. The ability to record electron-phonon coupling phenomena at the single-molecule level is a key prerequisite to fully rationalize and optimize charge-transport efficiencies for specific molecular configurations and currents. Here we exemplarily determine the pertaining coupling characteristics for a current-carrying chemically well-defined molecule by synchronous vibrational and current-voltage spectroscopy. These metal-molecule-metal junction insights are complemented by time-resolved infrared spectroscopy to assess the intramolecular vibrational relaxation dynamics. By measuring and analyzing the steady-state vibrational distribution during transient charge transport in a bis-phenylethynyl-anthracene derivative using anti-Stokes Raman scattering, we find ∼0.5 vibrational excitations per elementary charge passing through the metal-molecule-metal junction, by means of a rate model ansatz and quantum-chemical calculations.

4.
Opt Express ; 28(20): 30164-30173, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-33114900

RESUMEN

We present an ultrafast thin-disk based multipass amplifier operating at a wavelength of 1030 nm, designed for atmospheric research in the framework of the Laser Lightning Rod project. The CPA system delivers a pulse energy of 720 mJ and a pulse duration of 920 fs at a repetition rate of 1 kHz. The 240 mJ seed pulses generated by a regenerative amplifier are amplified to the final energy in a multipass amplifier via four industrial thin-disk laser heads. The beam quality factor remains ∼ 2.1 at the output. First results on horizontal long-range filament generation are presented.

5.
J Phys Chem A ; 124(28): 5784-5789, 2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32574493

RESUMEN

The hydrogen bond network accounts for many of the extraordinary physical properties of liquid water and ice. Its vibrational dynamics are quite complex in their entirety but can be accessed in detail by investigating small groups of only a few water molecules. Here, aqueous salt hydrates turned out to be an exceptional model system for water molecules arranged in well-defined geometrical structures that can be accessed by means of femtosecond spectroscopy of the OH stretching vibration. In this study, we find striking resemblance between the vibrational properties of three water molecules connected via strong hydrogen bonds in the trihydrate of LiNO3 and those of ordinary ice Ih. As in ice, the vibrations of the hydrate water molecules show ultrafast excited state dynamics that are strongly accelerated when proceeding from deuterated to neat H2O samples. The latter is analyzed by means of an additional relaxation channel that is due to Fermi resonance between the OH stretching vibration and the bend overtone accompanied by delocalization of the vibration over neighboring water molecules in the H2O species. Moreover, in the hydrate and ice samples severe spectral broadening is examined when comparing fundamental and excited state absorption bands. Here, proton delocalization along the strong hydrogen bonds is given as a possible underlying mechanism.

6.
Chirality ; 2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33091214

RESUMEN

We present aspects of emerging optical activity in thin racemic 1,1'-Bi-2-naphthol films upon irradiation with circularly polarized light and subsequent resonant two-photon absorption in the sample. Thorough analysis of the sample morphology is conducted by means of (polarization-resolved) optical microscopy and scanning electron microscopy (SEM). The influence of crystallization on the nonlinear probing technique (second harmonic generation circular dichroism [SHG-CD]) is investigated. Optical activity and crystallization are brought together by a systematic investigation in different crystallization regimes. We find crystallization to be responsible for two counter-acting effects, which arise for different states of crystallization. Measuring crystallized samples offers the best signal-to-noise ratio, but it limits generation of optical activity due to self-assembly effects. For suppression of crystallization on the other hand, there is a clear indication that enantiomeric selective desorption is responsible for the generation of optical activity in the sample. We reach the current resolution limit of probing with SHG-CD, as we suppress the crystallization in the racemic sample during desorption. In addition, intensity-dependent measurements on the induced optical activity reveal an onset threshold (≈0.7 TW cm-2), above which higher order nonlinear processes impair the generation of optical activity by desorption with CPL.

7.
Phys Rev Lett ; 123(17): 176801, 2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31702261

RESUMEN

We report measurements of the temporal dynamics of the valence band photoemission from the magnesium (0001) surface across the resonance of the Γ[over ¯] surface state at 134 eV and link them to observations of high-resolution synchrotron photoemission and numerical calculations of the time-dependent Schrödinger equation using an effective single-electron model potential. We observe a decrease in the time delay between photoemission from delocalized valence states and the localized core orbitals on resonance. Our approach to rigorously link excitation energy-resolved conventional steady-state photoemission with attosecond streaking spectroscopy reveals the connection between energy-space properties of bound electronic states and the temporal dynamics of the fundamental electronic excitations underlying the photoelectric effect.

8.
Nature ; 493(7430): 75-8, 2013 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-23222519

RESUMEN

The control of the electric and optical properties of semiconductors with microwave fields forms the basis of modern electronics, information processing and optical communications. The extension of such control to optical frequencies calls for wideband materials such as dielectrics, which require strong electric fields to alter their physical properties. Few-cycle laser pulses permit damage-free exposure of dielectrics to electric fields of several volts per ångström and significant modifications in their electronic system. Fields of such strength and temporal confinement can turn a dielectric from an insulating state to a conducting state within the optical period. However, to extend electric signal control and processing to light frequencies depends on the feasibility of reversing these effects approximately as fast as they can be induced. Here we study the underlying electron processes with sub-femtosecond solid-state spectroscopy, which reveals the feasibility of manipulating the electronic structure and electric polarizability of a dielectric reversibly with the electric field of light. We irradiate a dielectric (fused silica) with a waveform-controlled near-infrared few-cycle light field of several volts per angström and probe changes in extreme-ultraviolet absorptivity and near-infrared reflectivity on a timescale of approximately a hundred attoseconds to a few femtoseconds. The field-induced changes follow, in a highly nonlinear fashion, the turn-on and turn-off behaviour of the driving field, in agreement with the predictions of a quantum mechanical model. The ultrafast reversibility of the effects implies that the physical properties of a dielectric can be controlled with the electric field of light, offering the potential for petahertz-bandwidth signal manipulation.

9.
Nature ; 493(7430): 70-4, 2013 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-23222521

RESUMEN

The time it takes to switch on and off electric current determines the rate at which signals can be processed and sampled in modern information technology. Field-effect transistors are able to control currents at frequencies of the order of or higher than 100 gigahertz, but electric interconnects may hamper progress towards reaching the terahertz (10(12) hertz) range. All-optical injection of currents through interfering photoexcitation pathways or photoconductive switching of terahertz transients has made it possible to control electric current on a subpicosecond timescale in semiconductors. Insulators have been deemed unsuitable for both methods, because of the need for either ultraviolet light or strong fields, which induce slow damage or ultrafast breakdown, respectively. Here we report the feasibility of electric signal manipulation in a dielectric. A few-cycle optical waveform reversibly increases--free from breakdown--the a.c. conductivity of amorphous silicon dioxide (fused silica) by more than 18 orders of magnitude within 1 femtosecond, allowing electric currents to be driven, directed and switched by the instantaneous light field. Our work opens the way to extending electronic signal processing and high-speed metrology into the petahertz (10(15) hertz) domain.

10.
Angew Chem Int Ed Engl ; 58(44): 15685-15689, 2019 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-31393661

RESUMEN

The interest in enantioseparation and enantiopurification of chiral molecules has been drastically increasing over the past decades, since these are important steps in various disciplines such as pharmaceutical industry, asymmetric catalysis, and chiral sensing. By exposing racemic samples of BINOL (1,1'-bi-2-naphthol) coated onto achiral glass substrates to circularly polarized light, we unambiguously demonstrate that by controlling the handedness of circularly polarized light, preferential desorption of enantiomers can be achieved. There are currently no mechanisms known that would describe this phenomenon. Our observation together with a simplified phenomenological model suggests that the process of laser desorption needs to be further developed and the contribution of quantum mechanical processes should be revisited to account for these data. Asymmetric laser desorption provides us with a contamination-free technique for the enantioenrichment of chiral compounds.

11.
Opt Express ; 26(5): 5512-5513, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29529754

RESUMEN

In the original manuscript, a residual RMS timing jitter below 2 fs between pump and seed pulses in the stabilized case was claimed. Following a reevaluation of the data, this was underestimated. Due to a rounding error in the calibration routine, a miscalculated calibration factor was extracted. By using a higher precision, the updated residual timing jitter amounts to 2.76 fs, or sub-3 fs. In this erratum, the calibration routine is briefly reviewed and Fig. 4, which presents the timing jitter in the stabilized and unstabilized case, is updated. All other results remain unaffected.

12.
Opt Express ; 26(2): 1108-1124, 2018 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-29401989

RESUMEN

We present an optical parametric chirped pulse amplifier (OPCPA) delivering CEP-stable ultrashort pulses with 7 fs, high energies of more than 1.8 mJ and high average output power exceeding 10 W at a repetition rate of 6 kHz. The system is pumped by a picosecond regenerative thin-disk amplifier and exhibits an excellent long-term stability. In a proof-of-principle experiment, high harmonic generation is demonstrated in neon up to the 61st order.

13.
J Chem Phys ; 148(5): 054307, 2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29421900

RESUMEN

The vibrational dynamics of the OH stretching mode in Ba(ClO4)2 trihydrate are investigated by means of femtosecond infrared spectroscopy. The sample offers plane cyclic water trimers in the solid phase that feature virtually no hydrogen bond interaction between the water molecules. Selective excitation of the symmetric and asymmetric stretching leads to fast population redistribution, while simultaneous excitation yields quantum beats, which are monitored via a combination tone that dominates the overtone spectrum. The combination of steady-state and time-resolved spectroscopy with quantum chemical simulations and general theoretical considerations gives indication of various aspects of symmetry breakage. The system shows a joint population lifetime of 8 ps and a long-lived coherence between symmetric and asymmetric stretching, which decays with a time constant of 0.6 ps.

14.
Opt Lett ; 41(16): 3714-7, 2016 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-27519070

RESUMEN

Attosecond photoelectron streaking spectroscopy allows time-resolved electron dynamics with a temporal resolution approaching the atomic unit of time. Studies have been performed in numerous systems, including atoms, molecules, and surfaces, and the quest for ever higher temporal resolution called for ever wider spectral extent of the attosecond pulses. For typical experiments relying on attosecond pulses with a duration of 200 as, the time-bandwidth limitation for a Gaussian pulse implies a minimal spectral bandwidth larger than 9 eV translating to a corresponding spread of the detected photoelectron kinetic energies. Here, by utilizing a specially tailored narrowband reflective XUV multilayer mirror, we explore experimentally the minimal spectral width compatible with attosecond time-resolved photoelectron spectroscopy while obtaining the highest possible spectral resolution. The validity of the concept is proven by recording attosecond electron streaking traces from the direct semiconductor gallium arsenide (GaAs), with a nominal bandgap of 1.42 eV at room temperature, proving the potential of the approach for tracking charge dynamics also in these technologically highly relevant materials that previously have been inaccessible to attosecond science.

15.
Opt Lett ; 40(12): 2846-9, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26076277

RESUMEN

Recent advances in the development of attosecond soft x-ray sources toward photon wavelengths below 10 nm are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. We demonstrate that current attosecond experiments in the sub-200-eV range benefit from these improved optics. We present our achievements in utilizing ion-beam-deposited chromium/scandium (Cr/Sc) multilayer mirrors, optimized by tailored material dependent deposition and interface polishing, for the generation of single attosecond pulses from a high-harmonic cut-off spectrum at a central energy of 145 eV. Isolated attosecond pulses have been measured by soft x-ray-pump/NIR-probe electron streaking experiments and characterized using frequency-resolved optical gating for complete reconstruction of attosecond bursts (FROG/CRAB). The results demonstrate that Cr/Sc multilayer mirrors can be used as efficient attosecond optics for reflecting 600-attosecond pulses at a photon energy of 145 eV, which is a prerequisite for present and future attosecond experiments in this energy range.

16.
J Phys Chem A ; 119(26): 6831-6, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26039752

RESUMEN

A quantitative investigation of the relaxation dynamics of higher-lying vibrational states is afforded by a novel method of infrared pump-repump-probe spectroscopy. The technique is used to study the dynamics of OH stretching overtones in NaClO4·HDO monohydrate. We observe a continuous decrease of the energy separation for the first four states, i.e. v01 = 3575 cm(-1), v12 = 3370 cm(-1), and v23 = 3170 cm(-1), respectively. The population lifetime of the first excited state is 7.2 ps, while the one of the second excited state is largely reduced to 1.4 ps. The relaxation of the v = 2 state proceeds nearly quantitatively to the v = 1 state. The new information on the OH stretching overtones demands improved theoretical potentials and modeling of the H bond interactions. This work shows the potential of the new technique for the precise study of complex vibrational relaxation pathways.


Asunto(s)
Ciclohexanos/química , Imidas/química , Espectrofotometría Infrarroja/métodos , Hidrógeno/química , Enlace de Hidrógeno , Oxígeno/química , Percloratos/química , Compuestos de Sodio/química , Vibración
18.
Opt Express ; 22(25): 31050-6, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25607054

RESUMEN

Short-pulse-pumped optical parametric chirped pulse amplification (OPCPA) requires a precise temporal overlap of the interacting pulses in the nonlinear crystal to achieve stable performance. We present active synchronization of the ps-pump pulses and the broadband seed pulses used in an OPCPA system with a residual timing jitter below 2 fs. This unprecedented stability was achieved utilizing optical parametric amplification to generate the error signal, requiring less than 4 pJ of seed- and 10 µJ of pump-pulse-energy in the optical setup. The synchronization system shows excellent long-term performance and can be easily implemented in almost any OPCPA system.

19.
Sci Adv ; 10(26): eado0073, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38924399

RESUMEN

We report on the energy dependence of the photoemission time delay from the single-element layered dielectric HOPG (highly oriented pyrolytic graphite). This system offers the unique opportunity to directly observe the Eisenbud-Wigner-Smith (EWS) time delays related to the bulk electronic band structure without being strongly perturbed by ubiquitous effects of transport, screening, and multiple scattering. We find the experimental streaking time shifts to be sensitive to the modulation of the density of states in the high-energy region (E ≈ 100 eV) of the band structure. The present attosecond chronoscopy experiments reveal an energy-dependent increase of the photoemission time delay when the final state energy of the excited electrons lies in the vicinity of the bandgap providing information difficult to access by conventional spectroscopy. Accompanying simulations further corroborate our interpretation.

20.
Opt Express ; 21(17): 20145-58, 2013 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-24105560

RESUMEN

We present a three-color mid-IR setup for vibrational pump-repump-probe experiments with a temporal resolution well below 100 fs and a freely selectable spectral resolution of 20 to 360 cm(-1) for the pump and repump. The usable probe range without optical realignment is 900 cm(-1). The experimental design employed is greatly simplified compared to the widely used setups, highly robust and includes a novel means for generation of tunable few-cycle pulses with stable carrier-envelope phase. A Ti:sapphire pump system operating with 1 kHz and a modest 150 fs pulse duration supplies the total pump energy of just 0.6 mJ. The good signal-to-noise ratio of the setup allows the determination of spectrally resolved transient probe changes smaller than 6·10(-5) OD at 130 time delays in just 45 minutes. The performance of the spectrometer is demonstrated with transient IR spectra and decay curves of HDO molecules in lithium nitrate trihydrate and ice and a first all MIR pump-repump-probe measurement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA