Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
FASEB J ; 35(4): e21211, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33710641

RESUMEN

Organization of G protein-coupled receptors at the plasma membrane has been the focus of much recent attention. Advanced microscopy techniques have shown that these receptors can be localized to discrete microdomains and reorganization upon ligand activation is crucial in orchestrating their signaling. Here, we have compared the membrane organization and downstream signaling of a mutant (R108A, R3.50A) of the adenosine A3 receptor (A3 AR) to that of the wild-type receptor. Fluorescence Correlation Spectroscopy (FCS) studies with a fluorescent agonist (ABEA-X-BY630) demonstrated that both wild-type and mutant receptors bind agonist with high affinity but in subsequent downstream signaling assays the R108A mutation abolished agonist-mediated inhibition of cAMP production and ERK phosphorylation. In further FCS studies, both A3 AR and A3 AR R108A underwent similar agonist-induced increases in receptor density and molecular brightness which were accompanied by a decrease in membrane diffusion after agonist treatment. Using bimolecular fluorescence complementation, experiments showed that the R108A mutant retained the ability to recruit ß-arrestin and these receptor/arrestin complexes displayed similar membrane diffusion and organization to that observed with wild-type receptors. These data demonstrate that effective G protein signaling is not a prerequisite for agonist-stimulated ß-arrestin recruitment and membrane reorganization of the A3 AR.


Asunto(s)
Agonistas del Receptor de Adenosina A3/farmacología , Adenosina/análogos & derivados , Compuestos de Boro/farmacología , Proteínas de Unión al GTP/metabolismo , Receptor de Adenosina A3/metabolismo , Adenosina/farmacología , Animales , Arrestina/metabolismo , Células CHO , Cricetulus , Regulación de la Expresión Génica/efectos de los fármacos , Mutación , Unión Proteica , Receptor de Adenosina A3/genética
2.
Biochem Soc Trans ; 49(4): 1547-1554, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34436556

RESUMEN

It has become increasingly apparent that some G protein-coupled receptors (GPCRs) are not homogeneously expressed within the plasma membrane but may instead be organised within distinct signalling microdomains. These microdomains localise GPCRs in close proximity with other membrane proteins and intracellular signalling partners and could have profound implications for the spatial and temporal control of downstream signalling. In order to probe the molecular mechanisms that govern GPCR pharmacology within these domains, fluorescence techniques with effective single receptor sensitivity are required. Of these, fluorescence correlation spectroscopy (FCS) is a technique that meets this sensitivity threshold. This short review will provide an update of the recent uses of FCS based techniques in conjunction with GPCR subtype selective fluorescent ligands to characterise dynamic ligand-receptor interactions in whole cells and using purified GPCRs.


Asunto(s)
Microdominios de Membrana/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Espectrometría de Fluorescencia/métodos , Colorantes Fluorescentes/metabolismo , Humanos , Ligandos , Unión Proteica , Transducción de Señal
3.
Mol Pharmacol ; 98(2): 72-87, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32474443

RESUMEN

G protein-coupled receptors (GPCRs) are biologic switches that transduce extracellular stimuli into intracellular responses in the cell. Temporally resolving GPCR transduction pathways is key to understanding how cell signaling occurs. Here, we investigate the kinetics and dynamics of the activation and early signaling steps of the CXC chemokine receptor (CXCR) 4 in response to its natural ligands CXC chemokine ligand (CXCL) 12 and macrophage migration inhibitory factor (MIF), using Förster resonance energy transfer-based approaches. We show that CXCR4 presents a multifaceted response to CXCL12, with receptor activation (≈0.6 seconds) followed by a rearrangement in the receptor/G protein complex (≈1 seconds), a slower dimer rearrangement (≈1.7 seconds), and prolonged G protein activation (≈4 seconds). In comparison, MIF distinctly modulates every step of the transduction pathway, indicating distinct activation mechanisms and reflecting the different pharmacological properties of these two ligands. Our study also indicates that CXCR4 exhibits some degree of ligand-independent activity, a relevant feature for drug development. SIGNIFICANCE STATEMENT: The CXC chemokine ligand (CXCL) 12/CXC chemokine receptor (CXCR) 4 axis represents a well-established therapeutic target for cancer treatment. We demonstrate that CXCR4 exhibits a multifaceted response that involves dynamic receptor dimer rearrangements and that is kinetically embedded between receptor-G protein complex rearrangements and G protein activation. The alternative endogenous ligand macrophage migration inhibitory factor behaves opposite to CXCL12 in each assay studied and does not lead to G protein activation. This detailed understanding of the receptor activation may aid in the development of more specific drugs against this target.


Asunto(s)
Quimiocina CXCL12/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Receptores CXCR4/química , Receptores CXCR4/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Cinética , Unión Proteica , Multimerización de Proteína , Transducción de Señal
4.
Int J Mol Sci ; 19(4)2018 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-29690653

RESUMEN

Vascular endothelial growth factor-A (VEGF-A) is a key mediator of angiogenesis, signalling via the class IV tyrosine kinase receptor family of VEGF Receptors (VEGFRs). Although VEGF-A ligands bind to both VEGFR1 and VEGFR2, they primarily signal via VEGFR2 leading to endothelial cell proliferation, survival, migration and vascular permeability. Distinct VEGF-A isoforms result from alternative splicing of the Vegfa gene at exon 8, resulting in VEGFxxxa or VEGFxxxb isoforms. Alternative splicing events at exons 5⁻7, in addition to recently identified posttranslational read-through events, produce VEGF-A isoforms that differ in their bioavailability and interaction with the co-receptor Neuropilin-1. This review explores the molecular pharmacology of VEGF-A isoforms at VEGFR2 in respect to ligand binding and downstream signalling. To understand how VEGF-A isoforms have distinct signalling despite similar affinities for VEGFR2, this review re-evaluates the typical classification of these isoforms relative to the prototypical, “pro-angiogenic” VEGF165a. We also examine the molecular mechanisms underpinning the regulation of VEGF-A isoform signalling and the importance of interactions with other membrane and extracellular matrix proteins. As approved therapeutics targeting the VEGF-A/VEGFR signalling axis largely lack long-term efficacy, understanding these isoform-specific mechanisms could aid future drug discovery efforts targeting VEGF receptor pharmacology.


Asunto(s)
Isoformas de Proteínas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Células Endoteliales/metabolismo , Humanos , Transducción de Señal/fisiología
5.
Biochem Soc Trans ; 44(2): 624-9, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27068980

RESUMEN

The membranes of living cells have been shown to be highly organized into distinct microdomains, which has spatial and temporal consequences for the interaction of membrane bound receptors and their signalling partners as complexes. Fluorescence correlation spectroscopy (FCS) is a technique with single cell sensitivity that sheds light on the molecular dynamics of fluorescently labelled receptors, ligands or signalling complexes within small plasma membrane regions of living cells. This review provides an overview of the use of FCS to probe the real time quantification of the diffusion and concentration of G protein-coupled receptors (GPCRs), primarily to gain insights into ligand-receptor interactions and the molecular composition of signalling complexes. In addition we document the use of photon counting histogram (PCH) analysis to investigate how changes in molecular brightness (ε) can be a sensitive indicator of changes in molecular mass of fluorescently labelled moieties.


Asunto(s)
Colorantes Fluorescentes/química , Receptores Acoplados a Proteínas G/metabolismo , Espectrometría de Fluorescencia/métodos , Humanos , Simulación de Dinámica Molecular , Peso Molecular , Receptores Acoplados a Proteínas G/química
6.
Mol Pharmacol ; 87(4): 718-32, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25637604

RESUMEN

The ability of G protein-coupled receptors (GPCRs) to form dimers, and particularly heterodimers, offers potential for targeted therapeutics with improved selectivity. However, studying dimer pharmacology is challenging, because of signaling cross-talk or because dimerization may often be transient in nature. Here we develop a system to isolate the pharmacology of precisely defined GPCR dimers, trapped by bimolecular fluorescence complementation (BiFC). Specific effects of agonist activation on such dimers are quantified using automated imaging and analysis of their internalization, controlled for by simultaneous assessment of endocytosis of one coexpressed protomer population. We applied this BiFC system to study example neuropeptide Y (NPY) Y1 receptor dimers. Incorporation of binding-site or phosphorylation-site mutations into just one protomer of a Y1/Y1 BiFC homodimer had no impact on efficient NPY-stimulated endocytosis, demonstrating that single-site agonist occupancy, and one phosphorylated monomer within this dimer, was sufficient. For two Y1 receptor heterodimer combinations (with the Y4 receptor or ß2-adrenoceptor), agonist and antagonist pharmacology was explained by independent actions on the respective orthosteric binding sites. However, Y1/Y5 receptor BiFC dimers, compared with the constituent subtypes, were characterized by reduced potency and efficacy of Y5-selective peptide agonists, the inactivity of Y1-selective antagonists, and a change from surmountable to nonsurmountable antagonism for three unrelated Y5 antagonists. Thus, allosteric interactions between Y1 and Y5 receptors modify the pharmacology of the heterodimer, with implications for potential antiobesity agents that target centrally coexpressed Y1 and Y5 receptors to suppress appetite.


Asunto(s)
Receptores de Neuropéptido Y/metabolismo , Regulación Alostérica , Animales , Sitios de Unión , Unión Competitiva , Endocitosis , Células HEK293 , Humanos , Imagen Molecular , Mutación , Imagen Óptica , Fosforilación , Regiones Promotoras Genéticas , Multimerización de Proteína , Ensayo de Unión Radioligante , Ratas , Receptores de Neuropéptido Y/agonistas , Receptores de Neuropéptido Y/antagonistas & inhibidores , Receptores de Neuropéptido Y/genética , Sistemas de Mensajero Secundario
7.
FASEB J ; 28(10): 4211-22, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24970394

RESUMEN

In our previous work, using a fluorescent adenosine-A3 receptor (A3AR) agonist and fluorescence correlation spectroscopy (FCS), we demonstrated high-affinity labeling of the active receptor (R*) conformation. In the current study, we used a fluorescent A3AR antagonist (CA200645) to study the binding characteristics of antagonist-occupied inactive receptor (R) conformations in membrane microdomains of individual cells. FCS analysis of CA200645-occupied A3ARs revealed 2 species, τD2 and τD3, that diffused at 2.29 ± 0.35 and 0.09 ± 0.03 µm(2)/s, respectively. FCS analysis of a green fluorescent protein (GFP)-tagged A3AR exhibited a single diffusing species (0.105 µm(2)/s). The binding of CA200645 to τD3 was antagonized by nanomolar concentrations of the A3 antagonist MRS 1220, but not by the agonist NECA (up to 300 nM), consistent with labeling of R. CA200645 normally dissociated slowly from the A3AR, but inclusion of xanthine amine congener (XAC) or VUF 5455 during washout markedly accelerated the reduction in the number of particles exhibiting τD3 characteristics. It is notable that this effect was accompanied by a significant increase in the number of particles with τD2 diffusion. These data show that FCS analysis of ligand-occupied receptors provides a unique means of monitoring ligand A3AR residence times that are significantly reduced as a consequence of allosteric interaction across the dimer interface


Asunto(s)
Microdominios de Membrana/metabolismo , Receptor de Adenosina A3/metabolismo , Antagonistas del Receptor de Adenosina A3/farmacología , Regulación Alostérica , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Cinética , Unión Proteica , Multimerización de Proteína
8.
ACS Med Chem Lett ; 15(1): 143-148, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38229752

RESUMEN

The atypical chemokine receptor 3 (ACKR3) is a receptor that induces cancer progression and metastasis in multiple cell types. Therefore, new chemical tools are required to study the role of ACKR3 in cancer and other diseases. In this study, fluorescent probes, based on a series of small molecule ACKR3 agonists, were synthesized. Three fluorescent probes, which showed specific binding to ACKR3 through a luminescence-based NanoBRET binding assay (pKd ranging from 6.8 to 7.8) are disclosed. Due to their high affinity at the ACKR3, we have shown their application in both competition binding experiments and confocal microscopy studies showing the cellular distribution of this receptor.

9.
Commun Biol ; 7(1): 417, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580813

RESUMEN

The concept of agonist-independent signalling that can be attenuated by inverse agonists is a fundamental element of the cubic ternary complex model of G protein-coupled receptor (GPCR) activation. This model shows how a GPCR can exist in two conformational states in the absence of ligands; an inactive R state and an active R* state that differ in their affinities for agonists, inverse agonists, and G-protein alpha subunits. The proportion of R* receptors that exist in the absence of agonists determines the level of constitutive receptor activity. In this study we demonstrate that mechanical stimulation can induce ß2-adrenoceptor agonist-independent Gs-mediated cAMP signalling that is sensitive to inhibition by inverse agonists such as ICI-118551 and propranolol. The size of the mechano-sensitive response is dependent on the cell surface receptor expression level in HEK293G cells, is still observed in a ligand-binding deficient D113A mutant ß2-adrenoceptor and can be attenuated by site-directed mutagenesis of the extracellular N-glycosylation sites on the N-terminus and second extracellular loop of the ß2-adrenoceptor. Similar mechano-sensitive agonist-independent responses are observed in HEK293G cells overexpressing the A2A-adenosine receptor. These data provide new insights into how agonist-independent constitutive receptor activity can be enhanced by mechanical stimulation and regulated by inverse agonists.


Asunto(s)
Agonistas Adrenérgicos beta , Agonismo Inverso de Drogas , Agonistas Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/farmacología , Transducción de Señal , Ligandos , Receptores Adrenérgicos
10.
Sci Signal ; 17(828): eabl3758, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502733

RESUMEN

CXCL17 is a chemokine principally expressed by mucosal tissues, where it facilitates chemotaxis of monocytes, dendritic cells, and macrophages and has antimicrobial properties. CXCL17 is also implicated in the pathology of inflammatory disorders and progression of several cancers, and its expression is increased during viral infections of the lung. However, the exact role of CXCL17 in health and disease requires further investigation, and there is a need for confirmed molecular targets mediating CXCL17 functional responses. Using a range of bioluminescence resonance energy transfer (BRET)-based assays, here we demonstrated that CXCL17 inhibited CXCR4-mediated signaling and ligand binding. Moreover, CXCL17 interacted with neuropillin-1, a VEGFR2 coreceptor. In addition, we found that CXCL17 only inhibited CXCR4 ligand binding in intact cells and demonstrated that this effect was mimicked by known glycosaminoglycan binders, surfen and protamine sulfate. Disruption of putative GAG binding domains in CXCL17 prevented CXCR4 binding. This indicated that CXCL17 inhibited CXCR4 by a mechanism of action that potentially required the presence of a glycosaminoglycan-containing accessory protein. Together, our results revealed that CXCL17 is an endogenous inhibitor of CXCR4 and represents the next step in our understanding of the function of CXCL17 and regulation of CXCR4 signaling.


Asunto(s)
Quimiocinas CXC , Glicosaminoglicanos , Quimiocinas CXC/metabolismo , Glicosaminoglicanos/farmacología , Ligandos , Quimiocinas/metabolismo , Transducción de Señal , Receptores CXCR4/genética , Quimiocina CXCL12
11.
Biochim Biophys Acta ; 1823(6): 1068-81, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22487268

RESUMEN

Fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) analysis are powerful ways to study mobility and stoichiometry of G protein coupled receptor complexes, within microdomains of single living cells. However, relating these properties to molecular mechanisms can be challenging. We investigated the influence of ß-arrestin adaptors and endocytosis mechanisms on plasma membrane diffusion and particle brightness of GFP-tagged neuropeptide Y (NPY) receptors. A novel GFP-based bimolecular fluorescence complementation (BiFC) system also identified Y1 receptor-ß-arrestin complexes. Diffusion co-efficients (D) for Y1 and Y2-GFP receptors in HEK293 cell plasma membranes were 2.22 and 2.15 × 10(-9)cm(2)s(-1) respectively. At a concentration which promoted only Y1 receptor endocytosis, NPY treatment reduced Y1-GFP motility (D 1.48 × 10(-9)cm(2)s(-1)), but did not alter diffusion characteristics of the Y2-GFP receptor. Agonist induced changes in Y1 receptor motility were inhibited by mutations (6A) which prevented ß-arrestin recruitment and internalisation; conversely they became apparent in a Y2 receptor mutant with increased ß-arrestin affinity. NPY treatment also increased Y1 receptor-GFP particle brightness, changes which indicated receptor clustering, and which were abolished by the 6A mutation. The importance of ß-arrestin recruitment for these effects was illustrated by reduced lateral mobility (D 1.20-1.33 × 10(-9)cm(2)s(-1)) of Y1 receptor-ß-arrestin BiFC complexes. Thus NPY-induced changes in Y receptor motility and brightness reflect early events surrounding arrestin dependent endocytosis at the plasma membrane, results supported by a novel combined BiFC/FCS approach to detect the underlying receptor-ß-arrestin signalling complex.


Asunto(s)
Arrestinas/metabolismo , Membrana Celular/metabolismo , Endocitosis , Complejos Multiproteicos/metabolismo , Receptores de Neuropéptido Y/metabolismo , Espectrometría de Fluorescencia/métodos , Difusión , Recuperación de Fluorescencia tras Fotoblanqueo , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Imagenología Tridimensional , Proteínas Mutantes/metabolismo , Fotones , Transporte de Proteínas , Receptores de Neuropéptido Y/agonistas , Factores de Tiempo , beta-Arrestinas
12.
Br J Pharmacol ; 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386806

RESUMEN

Equilibrium binding assays are one of the mainstays of current drug discovery efforts to evaluate the interaction of drugs with receptors in membranes and intact cells. However, in recent years, there has been increased focus on the kinetics of the drug-receptor interaction to gain insight into the lifetime of drug-receptor complexes and the rate of association of a ligand with its receptor. Furthermore, drugs that act on topically distinct sites (allosteric) from those occupied by the endogenous ligand (orthosteric site) can induce conformational changes in the orthosteric binding site leading to changes in the association and/or dissociation rate constants of orthosteric ligands. Conformational changes in the orthosteric ligand binding site can also be induced through interaction with neighbouring accessory proteins and receptor homodimerisation and heterodimerisation. In this review, we provide an overview of the use of fluorescent ligand technologies to interrogate ligand-receptor kinetics in living cells and the novel insights that they can provide into the conformational changes induced by drugs acting on a variety of cell surface receptors including G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and cytokine receptors.

13.
Br J Pharmacol ; 180(11): 1444-1459, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36560872

RESUMEN

BACKGROUND AND PURPOSE: Interleukin-23 (IL-23) and its receptor are important drug targets for the treatment of auto-inflammatory diseases. IL-23 binds to a receptor complex composed of two single transmembrane spanning proteins IL23R and IL12Rß1. In this study, we aimed to gain further understanding of how ligand binding induces signalling of IL-23 receptor complexes using the proximity-based techniques of NanoLuc Binary Technology (NanoBiT) and Bioluminescence Resonance Energy Transfer (BRET). EXPERIMENTAL APPROACH: To monitor the formation of IL-23 receptor complexes, we developed a split luciferase (NanoBiT) assay whereby heteromerisation of receptor subunits can be measured through luminescence. The affinity of NanoBiT complemented complexes for IL-23 was measured using NanoBRET, and cytokine-induced signal transduction was measured using a phospho-STAT3 AlphaLISA assay. KEY RESULTS: NanoBiT measurements demonstrated that IL-23 receptor complexes formed to an equal degree in the presence and absence of ligand. NanoBRET measurements confirmed that these complexes bound IL-23 with a picomolar binding affinity. Measurement of STAT3 phosphorylation demonstrated that pre-formed IL-23 receptor complexes induced signalling following ligand binding. It was also demonstrated that synthetic ligand-independent signalling could be induced by high affinity (HiBit) but not low affinity (SmBit) NanoBiT crosslinking of the receptor N-terminal domains. CONCLUSIONS AND IMPLICATIONS: These results indicate that receptor complexes form prior to ligand binding and are not sufficient to induce signalling alone. Our findings indicate that IL-23 induces a conformational change in heteromeric receptor complexes, to enable signal transduction. These observations have direct implications for drug discovery efforts to target the IL-23 receptor.


Asunto(s)
Interleucina-23 , Transducción de Señal , Ligandos , Luciferasas/química , Luciferasas/metabolismo , Multimerización de Proteína , Supervivencia Celular
14.
Biochem Pharmacol ; 214: 115672, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37406966

RESUMEN

Vascular endothelial growth factor (VEGF) is an important mediator of angiogenesis, proliferation and migration of vascular endothelial cells. It is well known that cardiovascular safety liability for a wide range of small molecule tyrosine kinase inhibitors (TKIs) can result from interference with the VEGFR2 signalling system. In this study we have developed a ligand-binding assay using a fluorescent analogue of sunitinib (sunitinib-red) and full length VEGFR2 tagged on its C-terminus with the bioluminescent protein nanoluciferase to monitor ligand-binding to VEGFR2 using bioluminescence resonance energy transfer (BRET). This NanoBRET assay is a proximity-based assay (requiring the fluorescent and bioluminescent components to be within 10 nm of each other) that can monitor the binding of ligands to the kinase domain of VEGFR2. Sunitinib-red was not membrane permeable but was able to monitor the binding affinity and kinetics of a range of TKIs in cell lysates. Kinetic studies showed that sunitinib-red bound rapidly to VEGFR2 at 25 °C and that cediranib had slower binding kinetics with an average residence time of 111 min. Comparison between the log Ki values for inhibition of binding of sunitinib-red and log IC50 values for attenuation of VEGF165a-stimulated NFAT responses showed very similar values for compounds that inhibited sunitinib-red binding. However, two compounds that failed to inhibit sunitinib-red binding (dasatinib and entospletinib) were still able to attenuate VEGFR2-mediated NFAT signalling through inhibition of downstream signalling events. These results suggest that these compounds may still exhibit cardiovascular liabilities as a result of interference with downstream VEGFR2 signalling.


Asunto(s)
Factor A de Crecimiento Endotelial Vascular , Sunitinib , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales/metabolismo , Ligandos , Cinética , Inhibidores de Proteínas Quinasas/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
15.
Nat Commun ; 14(1): 2882, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208328

RESUMEN

Association of single nucleotide polymorphisms in the IL-23 receptor with several auto-inflammatory diseases, led to the heterodimeric receptor and its cytokine-ligand IL-23, becoming important drug targets. Successful antibody-based therapies directed against the cytokine have been licenced and a class of small peptide antagonists of the receptor have entered clinical trials. These peptide antagonists may offer therapeutic advantages over existing anti-IL-23 therapies, but little is known about their molecular pharmacology. In this study, we use a fluorescent version of IL-23 to characterise antagonists of the full-length receptor expressed by living cells using a NanoBRET competition assay. We then develop a cyclic peptide fluorescent probe, specific to the IL23p19:IL23R interface and use this molecule to characterise further receptor antagonists. Finally, we use the assays to study the immunocompromising C115Y IL23R mutation, demonstrating that the mechanism of action is a disruption of the binding epitope for IL23p19.


Asunto(s)
Colorantes Fluorescentes , Receptores de Interleucina , Células HEK293 , Humanos , Receptores de Interleucina/antagonistas & inhibidores , Receptores de Interleucina/genética , Colorantes Fluorescentes/metabolismo , Mutación , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Polimorfismo de Nucleótido Simple , Péptidos Cíclicos
16.
iScience ; 26(7): 107232, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37496673

RESUMEN

E-selectin is expressed on endothelial cells in response to inflammatory cytokines and mediates leukocyte rolling and extravasation. However, studies have been hampered by lack of experimental approaches to monitor expression in real time in living cells. Here, NanoLuc Binary Technology (NanoBiT) in conjunction with CRISPR-Cas9 genome editing was used to tag endogenous E-selectin in human umbilical vein endothelial cells (HUVECs) with the 11 amino acid nanoluciferase fragment HiBiT. Addition of the membrane-impermeable complementary fragment LgBiT allowed detection of cell surface expression. This allowed the effect of inflammatory mediators on E-selectin expression to be monitored in real time in living endothelial cells. NanoBiT combined with CRISPR-Cas9 gene editing allows sensitive monitoring of real-time changes in cell surface expression of E-selectin and offers a powerful tool for future drug discovery efforts aimed at this important inflammatory protein.

17.
J Med Chem ; 66(7): 5208-5222, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36944083

RESUMEN

The C-X-C chemokine receptor type 4, or CXCR4, is a chemokine receptor found to promote cancer progression and metastasis of various cancer cell types. To investigate the pharmacology of this receptor, and to further elucidate its role in cancer, novel chemical tools are a necessity. In the present study, using classic medicinal chemistry approaches, small-molecule-based fluorescent probes were designed and synthesized based on previously reported small-molecule antagonists. Here, we report the development of three distinct chemical classes of fluorescent probes that show specific binding to the CXCR4 receptor in a novel fluorescence-based NanoBRET binding assay (pKD ranging 6.6-7.1). Due to their retained affinity at CXCR4, we furthermore report their use in competition binding experiments and confocal microscopy to investigate the pharmacology and cellular distribution of this receptor.


Asunto(s)
Colorantes Fluorescentes , Receptores CXCR4 , Receptores CXCR4/metabolismo , Ligandos , Colorantes Fluorescentes/química , Unión Proteica , Quimiocinas/metabolismo , Quimiocina CXCL12/metabolismo
18.
Cell Rep Methods ; 3(3): 100422, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-37056381

RESUMEN

The therapeutic potential of ligands targeting disease-associated membrane proteins is predicted by ligand-receptor binding constants, which can be determined using NanoLuciferase (NanoLuc)-based bioluminescence resonance energy transfer (NanoBRET) methods. However, the broad applicability of these methods is hampered by the restricted availability of fluorescent probes. We describe the use of antibody fragments, like nanobodies, as universal building blocks for fluorescent probes for use in NanoBRET. Our nanobody-NanoBRET (NanoB2) workflow starts with the generation of NanoLuc-tagged receptors and fluorescent nanobodies, enabling homogeneous, real-time monitoring of nanobody-receptor binding. Moreover, NanoB2 facilitates the assessment of receptor binding of unlabeled ligands in competition binding experiments. The broad significance is illustrated by the successful application of NanoB2 to different drug targets (e.g., multiple G protein-coupled receptors [GPCRs] and a receptor tyrosine kinase [RTK]) at distinct therapeutically relevant binding sites (i.e., extracellular and intracellular).


Asunto(s)
Anticuerpos de Dominio Único , Ligandos , Proteínas de la Membrana , Colorantes Fluorescentes , Receptores Acoplados a Proteínas G/metabolismo
19.
Front Immunol ; 13: 1006718, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36505413

RESUMEN

Introduction: The Epidermal Growth Factor Receptor is a member of the Erb receptor tyrosine kinase family. It binds several ligands including EGF, betacellulin (BTC) and TGF-α, controls cellular proliferation and invasion and is overexpressed in various cancer types. Nanobodies (VHHs) are the antigen binding fragments of heavy chain only camelid antibodies. In this paper we used NanoBRET to compare the binding characteristics of fluorescent EGF or two distinct fluorescently labelled EGFR directed nanobodies (Q44c and Q86c) to full length EGFR. Methods: Living HEK293T cells were stably transfected with N terminal NLuc tagged EGFR. NanoBRET saturation, displacement or kinetics experiments were then performed using fluorescently labelled EGF ligands (EGF-AF488 or EGF-AF647) or fluorescently labelled EGFR targeting nanobodies (Q44c-HL488 and Q86c-HL488). Results: These data revealed that the EGFR nanobody Q44c was able to inhibit EGF binding to full length EGFR, while Q86c was able to recognise agonist bound EGFR and act as a conformational sensor. The specific binding of fluorescent Q44c-HL488 and EGF-AF488 was inhibited by a range of EGFR ligands (EGF> BTC>TGF-α). Discussion: EGFR targeting nanobodies are powerful tools for studying the role of the EGFR in health and disease and allow real time quantification of ligand binding and distinct ligand induced conformational changes.


Asunto(s)
Anticuerpos de Dominio Único , Humanos , Factor de Crecimiento Transformador alfa , Ligandos , Factor de Crecimiento Epidérmico , Células HEK293 , Receptores ErbB , Colorantes , Cadenas Pesadas de Inmunoglobulina
20.
Curr Opin Endocr Metab Res ; 16: 102-112, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33748531

RESUMEN

Alterations in signalling due to bidirectional transactivation of G protein-coupled receptor (GPCRs) and receptor tyrosine kinases (RTKs) are well established. Transactivation significantly diversifies signalling networks within a cell and has been implicated in promoting both advantageous and disadvantageous physiological and pathophysiological outcomes, making the GPCR/RTK interactions attractive new targets for drug discovery programmes. Transactivation has been observed for a plethora of receptor pairings in multiple cell types; however, the precise molecular mechanisms and signalling effectors involved can vary with receptor pairings and cell type. This short review will discuss the recent applications of proximity-based assays, such as resonance energy transfer and fluorescence-based imaging in investigating the dynamics of GPCR/RTK complex formation, subsequent effector protein recruitment and the cellular locations of complexes in living cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA