Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mod Pathol ; 37(1): 100352, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37839675

RESUMEN

In this study, we performed a comprehensive molecular analysis of paired skin and peripheral blood/bone marrow (BM) samples from 17 patients with cutaneous myeloid or cutaneous histiocytic-dendritic neoplasms. The cutaneous manifestations included 10 patients with cutaneous acute myeloid leukemia (c-AML), 2 patients with full or partial Langerhans cell differentiation, 2 patients with blastic plasmacytoid dendritic cell neoplasms (BPDCN), 1 patient with both Langerhans cell differentiation and BPDCN, and 2 patients with full or partial indeterminate dendritic cell differentiation. Seven of the 10 c-AML patients (70%) exhibited concurrent or subsequent marrow involvement by acute myeloid leukemia, with all 7 cases (100%) demonstrating shared clonal mutations in both the skin and BM. However, clonal relatedness was documented in one additional case that never had any BM involvement. Nevertheless, NPM1 mutations were identified in 7 of the 10 (70%) of these c-AML cases while one had KMT2A rearrangement and one showed inv(16). All 3 patients (100%) with Langerhans cell neoplasms, 2 patients with BPDCN (100%), and one of the 2 patients (50%) with other cutaneous dendritic cell neoplasms also demonstrated shared mutations between the skin and concurrent or subsequent myeloid neoplasms. Both BM and c-AML shared identical founding drivers, with a predominance of NPM1, DNMT3A, and translocations associated with monocytic differentiation, with common cutaneous-only mutations involving genes in the signal transduction and epigenetic pathways. Cutaneous histiocytic-dendritic neoplasms shared founding drivers in ASXL1, TET2, and/or SRSF2. However, in the Langerhans cell histiocytosis or histiocytic sarcoma cases, there exist recurrent secondary RAS pathway hits, whereas cutaneous BPDCN cases exhibit copy number or structural variants. These results enrich and broaden our understanding of clonally related cutaneous manifestations of myeloid neoplasms and further illuminate the highly diverse spectrum of morphologic and immunophenotypic features they exhibit.


Asunto(s)
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Trastornos Mieloproliferativos , Neoplasias Cutáneas , Humanos , Médula Ósea/patología , Células Dendríticas/metabolismo , Mutación , Leucemia Mieloide Aguda/patología , Neoplasias Hematológicas/patología , Neoplasias Cutáneas/patología , Trastornos Mieloproliferativos/patología , Proteínas Nucleares/genética
2.
Mod Pathol ; 37(7): 100509, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38704030

RESUMEN

Acute promyelocytic leukemia (APL) with variant RARA translocation is linked to over 15 partner genes. Recent publications encompassing 6 cases have expanded the spectrum of RARA partners to torque teno mini virus (TTMV). This entity is likely underrecognized due to the lack of clinician and pathologist familiarity, inability to detect the fusion using routine testing modalities, and informatic challenges in its recognition within next-generation sequencing (NGS) data. We describe a clinicopathologic approach and provide the necessary tools to screen and diagnose APL with TTMV::RARA using existing clinical DNA- or RNA-based NGS assays, which led to the identification of 4 cases, all without other known cytogenetic/molecular drivers. One was identified prospectively and 3 retrospectively, including 2 from custom automated screening of multiple data sets (50,257 cases of hematopoietic malignancy, including 4809 acute myeloid leukemia/myeloid sarcoma/APL cases). Two cases presented as myeloid sarcoma, including 1 with multiple relapses after acute myeloid leukemia-type chemotherapy and hematopoietic stem cell transplant. Two cases presented as leukemia, had a poor response to induction chemotherapy, but achieved remission upon reinduction (including all-trans retinoic acid in 1 case) and subsequent hematopoietic stem cell transplant. Neoplastic cells demonstrated features of APL including frequent azurophilic granules and dim/absent CD34 and HLA-DR expression. RARA rearrangement was not detected by karyotype or fluorescent in situ hybridization. Custom analysis of NGS fusion panel data identified TTMV::RARA rearrangements and, in the prospectively identified case, facilitated monitoring in sequential bone marrow samples. APL with TTMV::RARA is a rare leukemia with a high rate of treatment failure in described cases. The diagnosis should be considered in leukemias with features of APL that lack detectable RARA fusions and other drivers, and may be confirmed by appropriate NGS tests with custom informatics. Incorporation of all-trans retinoic acid may have a role in treatment but requires accurate recognition of the fusion for appropriate classification as APL.

3.
Blood ; 140(21): 2228-2247, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36130297

RESUMEN

Myeloid neoplasms and acute leukemias derive from the clonal expansion of hematopoietic cells driven by somatic gene mutations. Although assessment of morphology plays a crucial role in the diagnostic evaluation of patients with these malignancies, genomic characterization has become increasingly important for accurate diagnosis, risk assessment, and therapeutic decision making. Conventional cytogenetics, a comprehensive and unbiased method for assessing chromosomal abnormalities, has been the mainstay of genomic testing over the past several decades and remains relevant today. However, more recent advances in sequencing technology have increased our ability to detect somatic mutations through the use of targeted gene panels, whole-exome sequencing, whole-genome sequencing, and whole-transcriptome sequencing or RNA sequencing. In patients with myeloid neoplasms, whole-genome sequencing represents a potential replacement for both conventional cytogenetic and sequencing approaches, providing rapid and accurate comprehensive genomic profiling. DNA sequencing methods are used not only for detecting somatically acquired gene mutations but also for identifying germline gene mutations associated with inherited predisposition to hematologic neoplasms. The 2022 International Consensus Classification of myeloid neoplasms and acute leukemias makes extensive use of genomic data. The aim of this report is to help physicians and laboratorians implement genomic testing for diagnosis, risk stratification, and clinical decision making and illustrates the potential of genomic profiling for enabling personalized medicine in patients with hematologic neoplasms.


Asunto(s)
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Trastornos Mieloproliferativos , Neoplasias , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Mutación , Genómica , Neoplasias/genética , Neoplasias Hematológicas/genética , Toma de Decisiones Clínicas
4.
Am J Pathol ; 191(11): 2009-2022, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34364880

RESUMEN

Myelodysplastic syndromes (MDS) are clonal neoplasms of the hematopoietic stem cell that result in aberrant differentiation of hematopoietic lineages caused by a wide range of underlying genetic, epigenetic, and other causes. Despite the myriad origins, a recognizable MDS phenotype has been associated with miRNA aberrant expression. A model of aberrant myeloid maturation that mimics MDS was generated using a stable knockdown of miR-378-3p. This model exhibited a transcriptional profile indicating aberrant maturation and function, immunophenotypic and morphologic dysplasia, and aberrant growth that characterizes MDS. Moreover, aberrant signal transduction in response to stimulation specific to the stage of myeloid maturation as indicated by CyTOF mass cytometry was similar to that found in samples from patients with MDS. The aberrant signaling, immunophenotypic changes, cellular growth, and colony formation ability seen in this myeloid model could be reversed with azacytidine, albeit without significant improvement of neutrophil function.


Asunto(s)
MicroARNs/genética , Síndromes Mielodisplásicos/genética , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Técnicas de Silenciamiento del Gen , Células HL-60 , Humanos , Masculino , Persona de Mediana Edad
5.
Mod Pathol ; 33(6): 1135-1145, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31896808

RESUMEN

Greater than 90% of cases of systemic mastocytosis (SM) harbor pathogenic KIT mutations, particularly KITD816V. Prognostically-significant pathogenic KIT mutations also occur in 30-40% of core binding factor-associated acute myeloid leukemia (CBF-AML), but are uncommonly associated with concurrent SM. By comparison, the occurrence of SM in other myeloid neoplasms bearing pathogenic KIT mutations, particularly those with a chronic course, is poorly understood. Review of clinical next-generation sequencing (NGS) performed at our institutions in patients with known or suspected hematologic malignancies over an 8-year period revealed 64 patients with both a pathogenic KIT mutation detected at one or more timepoints and available bone marrow biopsy materials. Patients with KITD816V-mutated myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), or overlap MDS/MPN (n = 22) accounted for approximately one-third of our cohort (34%). Comprehensive morphologic and immunophenotypic characterization revealed that nearly all cases (n = 20, 91%) exhibited concurrent SM. In contrast, of the 18 patients (28%) with AML and KITD816V, only eight (44%) showed evidence of SM at any point in their disease course (p = 0.0021); of these eight, the AML component was characterized as AML with myelodysplasia-related changes (AML-MRC) in all but one instance (n = 7, 87%). Twelve patients (19%) had pathogenic KIT mutations other than p.D816V, all in the setting of AML (CFB-AML, n = 7; AML, not otherwise specified, n = 2; AML-MRC, n = 1; acute promyelocytic leukemia, n = 1); only two of these patients (17%), both with CBF-AML, exhibited concurrent SM. The remaining 12 patients (19%) had SM without evidence of an associated hematological neoplasm (AHN). For nearly one-third of the 30 SM-AHN patients in our cohort (n = 9, 30%), the SM component of their disease was not initially clinicopathologically recognized. We propose that identification of the KITD816V mutation in patients diagnosed with MDS, MPN, MDS/MPN, or AML-MRC should trigger reflex testing for SM.


Asunto(s)
Leucemia Mieloide Aguda/genética , Mastocitosis/genética , Síndromes Mielodisplásicos/genética , Trastornos Mieloproliferativos/genética , Proteínas Proto-Oncogénicas c-kit/genética , Análisis Mutacional de ADN , Humanos , Leucemia Mieloide Aguda/patología , Mastocitosis/patología , Mutación , Síndromes Mielodisplásicos/patología , Trastornos Mieloproliferativos/patología
10.
J Immunol ; 195(3): 1064-70, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26101326

RESUMEN

Sepsis is a major cause of neonatal mortality and morbidity worldwide. A recent report suggested that murine neonatal host defense against infection could be compromised by immunosuppressive CD71(+) erythroid splenocytes. We examined the impact of CD71(+) erythroid splenocytes on murine neonatal mortality to endotoxin challenge or polymicrobial sepsis and characterized circulating CD71(+) erythroid (CD235a(+)) cells in human neonates. Adoptive transfer or an Ab-mediated reduction in neonatal CD71(+) erythroid splenocytes did not alter murine neonatal survival to endotoxin challenge or polymicrobial sepsis challenge. Ex vivo immunosuppression of stimulated adult CD11b(+) cells was not limited to neonatal splenocytes; it also occurred with adult and neonatal bone marrow. Animals treated with anti-CD71 Ab showed reduced splenic bacterial load following bacterial challenge compared with isotype-treated mice. However, adoptive transfer of enriched CD71(+) erythroid splenocytes to CD71(+)-reduced animals did not reduce bacterial clearance. Human CD71(+)CD235a(+) cells were common among cord blood mononuclear cells and were shown to be reticulocytes. In summary, a lack of effect on murine survival to polymicrobial sepsis following adoptive transfer or diminution of CD71(+) erythroid splenocytes under these experimental conditions suggests that the impact of these cells on neonatal infection risk and progression may be limited. An unanticipated immune priming effect of anti-CD71 Ab treatment, rather than a reduction in immunosuppressive CD71(+) erythroid splenocytes, was likely responsible for the reported enhanced bacterial clearance. In humans, the well-described rapid decrease in circulating reticulocytes after birth suggests that they may have a limited role in reducing inflammation secondary to microbial colonization.


Asunto(s)
Antígenos CD/inmunología , Células de la Médula Ósea/inmunología , Células Eritroides/inmunología , Receptores de Transferrina/inmunología , Sepsis/inmunología , Traslado Adoptivo , Animales , Anticuerpos/inmunología , Antígeno CD11b/metabolismo , Endotoxinas/farmacología , Femenino , Sangre Fetal/citología , Sangre Fetal/inmunología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Reticulocitos/inmunología , Bazo/citología , Bazo/inmunología
11.
Semin Diagn Pathol ; 34(4): 371-376, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28502522

RESUMEN

The emergence of HIV/AIDS more than three decades ago led to an increased incidence of diseases caused by HHV8 co-infection, particularly Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman disease. Over time, the development of highly effective AIDS therapies has resulted in a decreased incidence of HHV8-associated entities, which are now more commonly found in patients with undiagnosed and/or untreated AIDS. Due to their rarity, some of these diseases may be difficult to recognize without appropriate clinical information. This article provides an overview of HHV8-related disorders, with a focus on their morphologic and phenotypic features, and includes a brief overview of laboratory methods used to detect HHV8. Disease mechanisms by which the HHV8 virion promotes tumorigenesis are also reviewed.


Asunto(s)
Infecciones por VIH/complicaciones , Infecciones por Herpesviridae/inmunología , Huésped Inmunocomprometido , Infecciones por Herpesviridae/epidemiología , Infecciones por Herpesviridae/patología , Herpesvirus Humano 8 , Humanos
12.
Histochem Cell Biol ; 146(5): 539-555, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27480259

RESUMEN

A dogma in squamous epithelial biology is that proliferation occurs in the basal cell layer. Notable exceptions are squamous epithelia of the human oral cavity, esophagus, ectocervix, and vagina. In these human epithelia, proliferation is rare in the basal cell layer, and the vast majority of cells positive for Ki67 and other proliferation markers are found in para- and suprabasal cell layers. This unique human feature of a generally quiescent basal cell layer overlaid by highly proliferative cells offers the rare opportunity to study the molecular features of undifferentiated, quiescent, putative stem cells in their natural context. Here, we show that the quiescent human oral mucosa basal cell layer expresses putative markers of stemness, while para- and suprabasal cells are characterized by cell cycle genes. We identified a TGFß signature in this quiescent basal cell layer. In in vitro organotypic cultures, human keratinocytes could be induced to express markers of these quiescent basal cells when TGFß signaling is activated. The study suggests that the separation of basal cell layer and proliferation in human oral mucosa may function to accommodate high proliferation rates and the protection of a quiescent reserve stem cell pool. Psoriasis, an epidermal inflammatory hyperproliferative disease, exhibits features of a quiescent basal cell layer mimicking normal oral mucosa. Our data indicate that structural changes in the organization of epithelial proliferation could contribute to longevity and carcinogenesis.


Asunto(s)
Mucosa Bucal/citología , Mucosa Bucal/metabolismo , Transducción de Señal , Nicho de Células Madre , Factor de Crecimiento Transformador beta/metabolismo , Células Cultivadas , Humanos
16.
BMC Genomics ; 16: 727, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26400237

RESUMEN

BACKGROUND: Although advances in sequencing technologies have popularized the use of microRNA (miRNA) sequencing (miRNA-seq) for the quantification of miRNA expression, questions remain concerning the optimal methodologies for analysis and utilization of the data. The construction of a miRNA sequencing library selects RNA by length rather than type. However, as we have previously described, miRNAs represent only a subset of the species obtained by size selection. Consequently, the libraries obtained for miRNA sequencing also contain a variety of additional species of small RNAs. This study looks at the prevalence of these other species obtained from bone marrow aspirate specimens and explores the predictive value of these small RNAs in the determination of response to therapy in myelodysplastic syndromes (MDS). METHODS: Paired pre and post treatment bone marrow aspirate specimens were obtained from patients with MDS who were treated with either azacytidine or decitabine (24 pre-treatment specimens, 23 post-treatment specimens) with 22 additional non-MDS control specimens. Total RNA was extracted from these specimens and submitted for next generation sequencing after an additional size exclusion step to enrich for small RNAs. The species of small RNAs were enumerated, single nucleotide variants (SNVs) identified, and finally the differential expression of tRNA-derived species (tDRs) in the specimens correlated with diseasestatus and response to therapy. RESULTS: Using miRNA sequencing data generated from bone marrow aspirate samples of patients with known MDS (N = 47) and controls (N = 23), we demonstrated that transfer RNA (tRNA) fragments (specifically tRNA halves, tRHs) are one of the most common species of small RNA isolated from size selection. Using tRNA expression values extracted from miRNA sequencing data, we identified six tRNA fragments that are differentially expressed between MDS and normal samples. Using the elastic net method, we identified four tRNAs-derived small RNAs (tDRs) that together can explain 67 % of the variation in treatment response for MDS patients. Similar analysis of specifically mitochondrial tDRs (mt-tDRs) identified 13 mt-tDRs which distinguished disease status in the samples and a single mt-tDR which predited response. Finally, 14 SNVs within the tDRs were found in at least 20 % of the MDS samples and were not observed in any of the control specimens. DISCUSSION: This study highlights the prevalence of tDRs in RNA-seq studies focused on small RNAs. The potential etiologies of these species, both technical and biologic, are discussed as well as important challenges in the interpretation of tDR data. CONCLUSIONS: Our analysis results suggest that tRNA fragments can be accurately detected through miRNA sequencing data and that the expression of these species may be useful in the diagnosis of MDS and the prediction of response to therapy.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Síndromes Mielodisplásicos/genética , ARN de Transferencia/genética , Anciano , Secuencia de Bases , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , MicroARNs/genética , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/patología , ARN de Transferencia/aislamiento & purificación
19.
Clin Lab Med ; 44(2): 339-353, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38821648

RESUMEN

Despite the apparent complexity of the molecular genetic underpinnings of myeloid neoplasms, most myeloid mutational profiles can be understood within a simple framework. Somatic mutations accumulate in hematopoietic stem cells with aging and toxic insults, termed clonal hematopoiesis. These "old stem cells" mutations, predominantly in the epigenetic and RNA spliceosome pathways, act as "founding" driver mutations leading to a clonal myeloid neoplasm when sufficient in number and clone size. Subsequent mutations can create the genetic flavor of the myeloid neoplasm ("backseat" drivers) due to their enrichment in certain entities or act as progression events ("aggressive" drivers) during clonal evolution.


Asunto(s)
Síndromes Mielodisplásicos , Trastornos Mieloproliferativos , Humanos , Mutación , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Síndromes Mielodisplásicos/patología , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Trastornos Mieloproliferativos/diagnóstico , Trastornos Mieloproliferativos/metabolismo
20.
JCO Oncol Pract ; 20(2): 220-227, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37683132

RESUMEN

PURPOSE: This study investigated the effectiveness of algorithmic testing in hematopathology at the Brigham and Women's Hospital and Dana-Farber Cancer Institute (DFCI). The algorithm was predicated on test selection after an initial pathologic evaluation to maximize cost-effective testing, especially for expensive molecular and cytogenetic assays. MATERIALS AND METHODS: Standard ordering protocols (SOPs) for 17 disease categories were developed and encoded in a decision support application. Six months of retrospective data from application beta testing was obtained and compared with actual testing practices during that timeframe. In addition, 2 years of prospective data were also obtained from patients at one community satellite site. RESULTS: A total of 460 retrospective cases (before introduction of algorithmic testing) and 109 prospective cases (following introduction) were analyzed. In the retrospective data, 61.7% of tests (509 of 825) were concordant with the SOPs while 38.3% (316 of 825) were overordered and 30.8% (227 of 736) of SOP-recommended tests were omitted. In the prospective data, 98.8% of testing was concordant (244 of 247 total tests) with only 1.2% overordered tests (3 of 247) and 7.6% omitted tests (20 of 264 SOP-recommended tests; overall P < .001). The cost of overordered tests before implementing SOP indicates a potential annualized saving of $1,347,520 in US dollars (USD) in overordered testing at Brigham and Women's Hospital/DFCI. Only two of 316 overordered tests (0.6%) returned any additional information, both for extremely rare clinical circumstances. CONCLUSION: Implementation of SOPs dramatically improved test ordering practices, with a just right number of ancillary tests that minimizes cost and has no significant impact on acquiring key informative test results.


Asunto(s)
Médula Ósea , Hospitales , Humanos , Femenino , Médula Ósea/patología , Estudios Retrospectivos , Biología Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA