RESUMEN
BACKGROUND: Since goat was domesticated 10,000 years ago, many factors have contributed to the differentiation of goat breeds and these are classified mainly into two types: (i) adaptation to different breeding systems and/or purposes and (ii) adaptation to different environments. As a result, approximately 600 goat breeds have developed worldwide; they differ considerably from one another in terms of phenotypic characteristics and are adapted to a wide range of climatic conditions. In this work, we analyzed the AdaptMap goat dataset, which is composed of data from more than 3000 animals collected worldwide and genotyped with the CaprineSNP50 BeadChip. These animals were partitioned into groups based on geographical area, production uses, available records on solid coat color and environmental variables including the sampling geographical coordinates, to investigate the role of natural and/or artificial selection in shaping the genome of goat breeds. RESULTS: Several signatures of selection on different chromosomal regions were detected across the different breeds, sub-geographical clusters, phenotypic and climatic groups. These regions contain genes that are involved in important biological processes, such as milk-, meat- or fiber-related production, coat color, glucose pathway, oxidative stress response, size, and circadian clock differences. Our results confirm previous findings in other species on adaptation to extreme environments and human purposes and provide new genes that could explain some of the differences between goat breeds according to their geographical distribution and adaptation to different environments. CONCLUSIONS: These analyses of signatures of selection provide a comprehensive first picture of the global domestication process and adaptation of goat breeds and highlight possible genes that may have contributed to the differentiation of this species worldwide.
Asunto(s)
Aclimatación , Domesticación , Cabras/genética , Selección Genética , Animales , Cruzamiento/métodos , Variación Genética , Genoma , Genotipo , Cabras/fisiología , Fenotipo , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADNRESUMEN
The Persian cat is mainly characterized by an extremely brachycephalic face as part of the standard body conformation. Despite the popularity, world-wide distribution, and economic importance of the Persian cat as a fancy breed, little is known about the genetics of their hallmark morphology, brachycephaly. Over 800 cats from different breeds including Persian, non-Persian breeds (Abyssinian, Cornish Rex, Bengal, La Perm, Norwegian Forest, Maine Coon, Manx, Oriental, and Siamese), and Persian-derived breeds (British Shorthair, Scottish Fold, Selkirk Rex) were genotyped with the Illumina 63 K feline DNA array. The experimental strategy was composed of three main steps: (i) the Persian dataset was screened for runs of homozygosity to find and select highly homozygous regions; (ii) selected Persian homozygous regions were evaluated for the difference of homozygosity between Persians and those considered non-Persian breeds, and, (iii) the Persian homozygous regions most divergent from the non-Persian breeds were investigated by haplotype analysis in the Persian-derived breeds. Four regions with high homozygosity (H > 0.7) were detected, each with an average length of 1 Mb. Three regions can be considered unique to the Persian breed, with a less conservative haplotype pattern in the Persian-derived breeds. Moreover, two genes, CHL1 and CNTN6 known to determine face shape modification in humans, reside in one of the identified regions and therefore are positional candidates for the brachycephalic face in Persians. In total, the homozygous regions contained several neuronal genes that could be involved in the Persian cat behavior and can provide new insights into cat domestication.
Asunto(s)
Cruzamiento , Evolución Molecular , Selección Genética , Animales , Gatos , Análisis por Conglomerados , Frecuencia de los Genes , Genética de Población , Genotipo , Haplotipos , Polimorfismo de Nucleótido SimpleRESUMEN
BACKGROUND: Genome signatures of artificial selection in U.S. Jersey cattle were identified by examining changes in haplotype homozygosity for a resource population of animals born between 1953 and 2007. Genetic merit of this population changed dramatically during this period for a number of traits, especially milk yield. The intense selection underlying these changes was achieved through extensive use of artificial insemination (AI), which also increased consanguinity of the population to a few superior Jersey bulls. As a result, allele frequencies are shifted for many contemporary animals, and in numerous cases to a homozygous state for specific genomic regions. The goal of this study was to identify those selection signatures that occurred after extensive use of AI since the 1960, using analyses of shared haplotype segments or Runs of Homozygosity. When combined with animal birth year information, signatures of selection associated with economically important traits were identified and compared to results from an extended haplotype homozygosity analysis. RESULTS: Overall, our results reveal that more recent selection increased autozygosity across the entire genome, but some specific regions increased more than others. A genome-wide scan identified more than 15 regions with a substantial change in autozygosity. Haplotypes found to be associated with increased milk, fat and protein yield in U.S. Jersey cattle also consistently increased in frequency. CONCLUSIONS: The analyses used in this study was able to detect directional selection over the last few decades when individual production records for Jersey animals were available.
Asunto(s)
Genoma , Inseminación Artificial , Selección Genética/genética , Animales , Bovinos , Frecuencia de los Genes , Genotipo , Haplotipos , Homocigoto , Fenotipo , Polimorfismo de Nucleótido Simple , Estados UnidosRESUMEN
DNA markers associated with quantitative trait loci (QTL) affecting host tolerance to gastrointestinal (GI) parasite infection are ideal targets for marker-assisted selection. However, few studies in cattle have attempted to identify this type of QTL due to the difficulty of generating accurate phenotypic data from a resource population with adequate statistical power for detection. For this effort, we amassed fecal egg count (FEC) measures from annual natural field challenges with GI nematodes that spanned 12 different contemporary groups of Angus calves (1992-2000) derived from a closed breeding population. FEC and blood pepsinogen measures were taken weekly over a 26-week period post-weaning, and the FEC data were Box-Cox transformed to normalize the distribution of phenotypes. These 305 test animals and more than 100 founding animals from the extended pedigree were genotyped across 190 microsatellites markers. The genome-wide analyses identified a suggestive genome-wide QTL on bovine chromosome (Chr) 8 (P < 0.002) and nominal QTL on Chr 4, 12 and 17 (P < 0.05). These findings were unique for cattle, and some corresponded to previously identified QTL locations for parasite-related traits in sheep to provide genome locations for further fine mapping of parasite resistance/susceptibility in Angus cattle.
Asunto(s)
Enfermedades de los Bovinos/genética , Bovinos/genética , Resistencia a la Enfermedad/genética , Parasitosis Intestinales/veterinaria , Infecciones por Nematodos/veterinaria , Sitios de Carácter Cuantitativo , Animales , Bovinos/parasitología , Enfermedades de los Bovinos/parasitología , Mapeo Cromosómico/veterinaria , Parasitosis Intestinales/genética , Repeticiones de Microsatélite , Nematodos , Infecciones por Nematodos/genética , Recuento de Huevos de Parásitos , FenotipoRESUMEN
Pork from Jeju black pig (population J) and Berkshire (population B) has a unique market share in Korea because of their high meat quality. Due to the high demand of this pork, traceability of the pork to its origin is becoming an important part of the consumer demand. To examine the feasibility of such a system, we aim to provide basic genetic information of the two black pig populations and assess the possibility of genetically distinguishing between the two breeds. Muscle samples were collected from slaughter houses in Jeju Island and Namwon, Chonbuk province, Korea, for populations J and B, respectively. In total 800 Jeju black pigs and 351 Berkshires were genotyped at thirteen microsatellite (MS) markers. Analyses on the genetic diversity of the two populations were carried out in the programs MS toolkit and FSTAT. The population structure of the two breeds was determined by a Bayesian clustering method implemented in structure and by a phylogenetic analysis in Phylip. Population J exhibited higher mean number of alleles, expected heterozygosity and observed heterozygosity value, and polymorphism information content, compared to population B. The FIS values of population J and population B were 0.03 and -0.005, respectively, indicating that little or no inbreeding has occurred. In addition, genetic structure analysis revealed the possibility of gene flow from population B to population J. The expected probability of identify value of the 13 MS markers was 9.87×10(-14) in population J, 3.17×10(-9) in population B, and 1.03×10(-12) in the two populations. The results of this study are useful in distinguishing between the two black pig breeds and can be used as a foundation for further development of DNA markers.
RESUMEN
Introduction: Most male pigs are surgically castrated to avoid puberty-derived boar taint and aggressiveness. However, this surgical intervention represents a welfare concern in swine production. Disrupting porcine KISS1 is hypothesized to delay or abolish puberty by inducing variable hypogonadotropism and thus preventing the need for castration. Methods: To test this hypothesis, we generated the first KISS1-edited large animal using CRISPR/Cas9-ribonucleoproteins and single-stranded donor oligonucleotides. The targeted region preceded the sequence encoding a conserved core motif of kisspeptin. Genome editors were intracytoplasmically injected into 684 swine zygotes and transferred to 19 hormonally synchronized surrogate sows. In nine litters, 49 American Yorkshire and 20 Duroc liveborn piglets were naturally farrowed. Results: Thirty-five of these pigs bore KISS1-disruptive alleles ranging in frequency from 5% to 97% and did not phenotypically differ from their wild-type counterparts. In contrast, four KISS1-edited pigs (two boars and two gilts) with disruptive allele frequencies of 96% and 100% demonstrated full hypogonadotropism, infantile reproductive tracts, and failed to reach sexual maturity. Change in body weight during development was unaffected by editing KISS1. Founder pigs partially carrying KISS1-disruptive alleles were bred resulting in a total of 53 KISS1 +/+, 60 KISS1 +/-, and 34 KISS1 -/- F1 liveborn piglets, confirming germline transmission. Discussion: Results demonstrate that a high proportion of KISS1 alleles in pigs must be disrupted before variation in gonadotropin secretion is observed, suggesting that even a small amount of kisspeptin ligand is sufficient to confer proper sexual development and puberty in pigs. Follow-on studies will evaluate fertility restoration in KISS1 KO breeding stock to fully realize the potential of KISS1 gene edits to eliminate the need for surgical castration.
RESUMEN
BACKGROUND: Copy number variation (CNV) represents another important source of genetic variation complementary to single nucleotide polymorphism (SNP). High-density SNP array data have been routinely used to detect human CNVs, many of which have significant functional effects on gene expression and human diseases. In the dairy industry, a large quantity of SNP genotyping results are becoming available and can be used for CNV discovery to understand and accelerate genetic improvement for complex traits. RESULTS: We performed a systematic analysis of CNV using the Bovine HapMap SNP genotyping data, including 539 animals of 21 modern cattle breeds and 6 outgroups. After correcting genomic waves and considering the pedigree information, we identified 682 candidate CNV regions, which represent 139.8 megabases (~4.60%) of the genome. Selected CNVs were further experimentally validated and we found that copy number "gain" CNVs were predominantly clustered in tandem rather than existing as interspersed duplications. Many CNV regions (~56%) overlap with cattle genes (1,263), which are significantly enriched for immunity, lactation, reproduction and rumination. The overlap of this new dataset and other published CNV studies was less than 40%; however, our discovery of large, high frequency (> 5% of animals surveyed) CNV regions showed 90% agreement with other studies. These results highlight the differences and commonalities between technical platforms. CONCLUSIONS: We present a comprehensive genomic analysis of cattle CNVs derived from SNP data which will be a valuable genomic variation resource. Combined with SNP detection assays, gene-containing CNV regions may help identify genes undergoing artificial selection in domesticated animals.
Asunto(s)
Bovinos/genética , Dosificación de Gen , Polimorfismo de Nucleótido Simple , Animales , Cruzamiento , Hibridación Genómica Comparativa , Marcadores Genéticos , Genoma , Genómica/métodos , Genotipo , Linaje , Análisis de Secuencia de ADNRESUMEN
Cattle domestication occurred at least twice independently and gave rise to the modern taurine and indicine cattle breeds. European cattle diversity is generally dominated by taurine cattle, although elevated levels of indicine ancestry have been recorded in several breeds from southern Europe. Here we use genome-wide high-density SNP genotyping data to investigate the taurine and indicine ancestry in southern European cattle, based on a dataset comprising 508 individuals from 23 cattle breeds of taurine, indicine and mixed ancestry, including three breeds from Central Italy known to exhibit the highest levels of indicine introgression among southern European breeds. Based on local genomic ancestry analyses, we reconstruct taurine and indicine ancestry genome-wide and along chromosomes. We scrutinise local genomic introgression signals and identify genomic regions that have introgressed from indicine into taurine cattle under positive selection, harbouring genes with functions related to body size and feed efficiency. These findings suggest that indicine-derived traits helped enhance Central Italian cattle through adaptive introgression. The identified genes could provide genomic targets for selection for improved cattle performance. Our findings elucidate the key role of adaptive introgression in shaping the phenotypic features of modern cattle, aided by cultural and livestock exchange among historic human societies.
Asunto(s)
Bovinos/genética , Domesticación , Polimorfismo de Nucleótido Simple , Selección Genética , Animales , Estudio de Asociación del Genoma Completo , ItaliaRESUMEN
Heat stress is one of the limiting factors negatively affecting pig production, health, and fertility. Characterizing genomic regions responsible for variation in HS tolerance would be useful in identifying important genetic factor(s) regulating physiological responses to HS. In the present study, we performed genome-wide association analyses for respiration rate (RR), rectal temperature (TR), and skin temperature (TS) during HS in 214 crossbred gilts genotyped for 68,549 single nucleotide polymorphisms (SNP) using the Porcine SNP 70K BeadChip. Considering the top 0.1% smoothed phenotypic variances explained by SNP windows, we detected 26, 26, 21, and 14 genes that reside within SNPs explaining the largest proportion of variance (top 25 SNP windows) and associated with change in RR (ΔRR) from thermoneutral (TN) conditions to HS environment, as well as the change in prepubertal TR (ΔTR), change in postpubertal ΔTR, and change in TS (ΔTS), respectively. The region between 28.85 Mb and 29.10 Mb on chromosome 16 explained about 0.05% of the observed variation for ΔRR. The growth hormone receptor (GHR) gene resides in this region and is associated with the HS response. The other important candidate genes associated with ΔRR (PAIP1, NNT, and TEAD4), ΔTR (LIMS2, TTR, and TEAD4), and ΔTS (ERBB4, FKBP1B, NFATC2, and ATP9A) have reported roles in the cellular stress response. The SNP explaining the largest proportion of variance and located within and in the vicinity of genes were related to apoptosis or cellular stress and are potential candidates that underlie the physiological response to HS in pigs.
Asunto(s)
Estudio de Asociación del Genoma Completo , Respuesta al Choque Térmico , Polimorfismo de Nucleótido Simple/genética , Porcinos/fisiología , Termotolerancia , Animales , Estudios de Cohortes , Femenino , Fertilidad , Genotipo , Trastornos de Estrés por Calor , Calor , Fenotipo , Frecuencia Respiratoria , Porcinos/genéticaRESUMEN
Evolutionary adaptations are occasionally convergent solutions to the same problem. A mutation contributing to a heat tolerance adaptation in Senepol cattle, a New World breed of mostly European descent, results in the distinct phenotype known as slick, where an animal has shorter hair and lower follicle density across its coat than wild type animals. The causal variant, located in the 11th exon of prolactin receptor, produces a frameshift that results in a truncated protein. However, this mutation does not explain all cases of slick coats found in criollo breeds. Here, we obtained genome sequences from slick cattle of a geographically distinct criollo breed, namely Limonero, whose ancestors were originally brought to the Americas by the Spanish. These data were used to identify new causal alleles in the 11th exon of the prolactin receptor, two of which also encode shortened proteins that remove a highly conserved tyrosine residue. These new mutations explained almost 90% of investigated cases of animals that had slick coats, but which also did not carry the Senepol slick allele. These results demonstrate convergent evolution at the molecular level in a trait important to the adaptation of an animal to its environment.
RESUMEN
Material and failure analysis techniques are key tools for determining causation in case of explosive and bursting accident result from material and process defect of product in the field of forensic science. The boiler rupture generated by defect of the welding division, corrosion, overheating and degradation of the material have devastating power. If weak division of boiler burner is fractured by internal pressure, saturated vapor and water is vaporized suddenly. At that time, volume of the saturated vapor and water increases up to thousands of volume. This failure of boiler burner can lead to a fatal disaster. In order to prevent an explosion and of the boiler, it is critical to introduce a systematic investigation and prevention measures in advance. In this research, the cause of boiler failure is investigated through forensic engineering method. Specifically, the failure mechanism will be identified by fractography using scanning electron microscopes (SEM) and Optical Microscopes (OM) and mechanical characterizations. This paper presents a failure analysis of household welding joints for the water tank of a household boiler burner. Visual inspection was performed to find out the characteristics of the fracture of the as-received material. Also, the micro-structural changes such as grain growth and carbide coarsening were examined by optical microscope. Detailed studies of fracture surfaces were made to find out the crack propagation on the weld joint of a boiler burner. It was concluded that the rupture may be caused by overheating induced by insufficient water on the boiler, and it could be accelerated by the metal temperature increase.
RESUMEN
BACKGROUND: More than 90 percent of cattle in Tanzania belong to the indigenous Tanzania Short Horn Zebu (TSZ) population which has been classified into 12 strains based on historical evidence, morphological characteristics, and geographic distribution. However, specific genetic information of each TSZ population has been lacking and has caused difficulties in designing programs such as selection, crossbreeding, breed improvement or conservation. This study was designed to evaluate the genetic structure, assess genetic relationships, and to identify signatures of selection among cattle of Tanzania with the main goal of understanding genetic relationship, variation and uniqueness among them. METHODOLOGY/PRINCIPAL FINDINGS: The Illumina Bos indicus SNP 80K BeadChip was used to genotype genome wide SNPs in 168 DNA samples obtained from three strains of TSZ cattle namely Maasai, Tarime and Sukuma as well as two comparative breeds; Boran and Friesian. Population structure and signatures of selection were examined using principal component analysis (PCA), admixture analysis, pairwise distances (FST), integrated haplotype score (iHS), identical by state (IBS) and runs of homozygosity (ROH). There was a low level of inbreeding (F~0.01) in the TSZ population compared to the Boran and Friesian breeds. The analyses of FST, IBS and admixture identified no considerable differentiation between TSZ trains. Importantly, common ancestry in Boran and TSZ were revealed based on admixture and IBD, implying gene flow between two populations. In addition, Friesian ancestry was found in Boran. A few common significant iHS were detected, which may reflect influence of recent selection in each breed or strain. CONCLUSIONS: Population admixture and selection signatures could be applied to develop conservation plan of TSZ cattle as well as future breeding programs in East African cattle.
Asunto(s)
Genética de Población , Genoma , Polimorfismo de Nucleótido Simple/genética , Selección Genética , Animales , Cruzamiento , Bovinos , Cruzamientos Genéticos , Genotipo , Haplotipos , Homocigoto , Hibridación Genética , TanzaníaRESUMEN
African indigenous sheep are classified as fat-tail, thin-tail and fat-rump hair sheep. The fat-tail are well adapted to dryland environments, but little is known on their genome profiles. We analyzed patterns of genomic variation by genotyping, with the Ovine SNP50K microarray, 394 individuals from five populations of fat-tail sheep from a desert environment in Egypt. Comparative inferences with other East African and western Asia fat-tail and European sheep, reveal at least two phylogeographically distinct genepools of fat-tail sheep in Africa that differ from the European genepool, suggesting separate evolutionary and breeding history. We identified 24 candidate selection sweep regions, spanning 172 potentially novel and known genes, which are enriched with genes underpinning dryland adaptation physiology. In particular, we found selection sweeps spanning genes and/or pathways associated with metabolism; response to stress, ultraviolet radiation, oxidative stress and DNA damage repair; activation of immune response; regulation of reproduction, organ function and development, body size and morphology, skin and hair pigmentation, and keratinization. Our findings provide insights on the complexity of genome architecture regarding dryland stress adaptation in the fat-tail sheep and showcase the indigenous stocks as appropriate genotypes for adaptation planning to sustain livestock production and human livelihoods, under future climates.
Asunto(s)
Adaptación Fisiológica/genética , Genotipo , Ovinos/fisiología , Estrés Fisiológico/fisiología , África , Animales , Asia Occidental , Evolución Biológica , Reparación del ADN/genética , Sequías , Ecosistema , Egipto , Especiación Genética , Genética de Población , Genómica , Ganado , Análisis por Micromatrices , Pigmentación/genética , Selección Artificial , Especificidad de la Especie , Transcriptoma , Rayos UltravioletaRESUMEN
Hair sheep of Caribbean origin have become an important part of the U.S. sheep industry. Their lack of wool eliminates a number of health concerns and drastically reduces the cost of production. More importantly, Caribbean hair sheep demonstrate robust production performance even in the presence of drug-resistant gastrointestinal nematodes, a rising concern to the industry. Despite the growing importance of hair sheep in the Americas their genetic origins have remained speculative. Prior to this report no genetic studies were able to identify a unique geographical origin of hair sheep in the New World. Our study clarifies the African and European ancestry of Caribbean hair sheep. Whole-genome structural analysis was conducted on four established breeds of hair sheep from the Caribbean region. Using breeds representing Africa and Europe we establish an objective measure indicating Caribbean hair sheep are derived from Iberian and West African origins. Caribbean hair sheep result from West African introgression into established ecotypes of Iberian descent. Genotypes from 47,750 autosomal single nucleotide polymorphism markers scored in 290 animals were used to characterize the population structure of the St. Croix, Barbados Blackbelly, Morada Nova, and Santa Ines. Principal components, admixture, and phylogenetic analyses results correlate with historical patterns of colonization and trade. These patterns support co-migration of these sheep with humans.
Asunto(s)
Ovinos/genética , África Occidental , Animales , Análisis de Componente Principal , Indias OccidentalesRESUMEN
The recent evolution of cattle is marked by fluctuations in body size. Height in the Bos taurus lineage was reduced by a factor of ~1.5 from the Neolithic to the Middle Ages, and increased again only during the Early Modern Ages. Using haplotype analysis, we found evidence that the bovine PLAG1 mutation (Q) with major effects on body size, weight and reproduction is a >1,000 years old derived allele that increased rapidly in frequency in Northwestern European B. taurus between the 16th and 18th centuries. Towards the 19th and 20th centuries, Q was introgressed into non-European B. taurus and Bos indicus breeds. These data implicate a major role of Q in recent changes in body size in modern cattle, and represent one of the first examples of a genomic sweep in livestock that was driven by selection on a complex trait.
Asunto(s)
Huesos , Proteínas de Unión al ADN/genética , Pleiotropía Genética , Genética de Población , Haplotipos , Mutación , Postura , Animales , Bovinos , Desequilibrio de LigamientoRESUMEN
Inbreeding is often an inevitable outcome of strong directional artificial selection but on average it reduces population fitness with increased frequency of recessive deleterious alleles. Runs of homozygosity (ROH) representing genomic autozygosity that occur from mating between selected and genomically related individuals may be able to reveal the regions affecting fitness. To examine the influence of genomic autozygosity on fitness, we used a genome-wide association test to evaluate potential negative correlations between ROH and daughter pregnancy rate (DPR) or somatic cell score (SCS) in US Jersey cattle. In addition, relationships between changes of local ROH and inbreeding coefficients (F) were assessed to locate genomic regions with increased inbreeding. Despite finding some decreases in fertility associated with incremental increases in F, most emerging local ROH were not significantly associated with DPR or SCS. Furthermore, the analyses of ROH could be approximated with the most frequent haplotype(s), including the associations of ROH and F or traits. The analysis of the most frequent haplotype revealed that associations of ROH and fertility could be accounted for by the additive genetic effect on the trait. Thus, we suggest that a change of autozygosity is more likely to demonstrate footprints of selected haplotypes for production rather than highlight the possible increased local autozygosity of a recessive detrimental allele resulting from the mating between closely related animals in Jersey cattle.
Asunto(s)
Bovinos/genética , Endogamia , Alelos , Animales , Femenino , Fertilidad/genética , Genoma , Estudio de Asociación del Genoma Completo , Haplotipos/genética , Homocigoto , Masculino , Modelos Genéticos , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Embarazo , Análisis de Componente PrincipalRESUMEN
Intramuscular fat (IMF) content is an important trait affecting the quality of pork. Two Duroc populations, one under positive selection for IMF and the other selected for decreased backfat but under stabilizing selection for IMF, were used to identify signatures of selection associated with IMF using 60,000 single-nucleotide polymorphism data. The effects of selection were analyzed between 2 lines or groups representing selected and control animals within each population using a discriminant analysis of principal components and Wright's fixation index (FST). Moreover, extended haplotype homozygosity-based approaches were used to examine the changes in haplotype frequency due to recent selection. Each statistical method identified 1020 selection signatures. A few haplotype-based signatures of selection agreed with results from a genome-wide association study (GWAS), while FST measures showed a better agreement with GWAS results. Agreement of marker-trait associations and signatures of selection was limited, and further examination will be necessary to understand the effect of selection on IMF and why some regions identified by GWAS did not appear to respond to the selection practiced. The genes in 21 consensus selection signatures were examined. Several genes with an effect on overall fatness were identified, but further research is needed to assess whether or not some of them could have a specific effect on IMF.
Asunto(s)
Distribución de la Grasa Corporal/veterinaria , Porcinos/genética , Porcinos/fisiología , Animales , Marcadores Genéticos , Haplotipos , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal , Selección GenéticaRESUMEN
Genetic markers associated with parasite indicator traits are ideal targets for study of marker assisted selection aimed at controlling infections that reduce herd use of anthelminthics. For this study, we collected gastrointestinal (GI) nematode fecal egg count (FEC) data from post-weaning animals of an Angus resource population challenged to a 26 week natural exposure on pasture. In all, data from 487 animals was collected over a 16 year period between 1992 and 2007, most of which were selected for a specific DRB1 allele to reduce the influence of potential allelic variant effects of the MHC locus. A genome-wide association study (GWAS) based on BovineSNP50 genotypes revealed six genomic regions located on bovine Chromosomes 3, 5, 8, 15 and 27; which were significantly associated (-log10 p=4.3) with Box-Cox transformed mean FEC (BC-MFEC). DAVID analysis of the genes within the significant genomic regions suggested a correlation between our results and annotation for genes involved in inflammatory response to infection. Furthermore, ROH and selection signature analyses provided strong evidence that the genomic regions associated BC-MFEC have not been affected by local autozygosity or recent experimental selection. These findings provide useful information for parasite resistance prediction for young grazing cattle and suggest new candidate gene targets for development of disease-modifying therapies or future studies of host response to GI parasite infection.