Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 454(7205): 771-5, 2008 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-18594510

RESUMEN

Homoiotherms, for example mammals, regulate their body temperature with physiological responses such as a change of metabolic rate and sweating. In contrast, the body temperature of poikilotherms, for example Drosophila, is the result of heat exchange with the surrounding environment as a result of the large ratio of surface area to volume of their bodies. Accordingly, these animals must instinctively move to places with an environmental temperature as close as possible to their genetically determined desired temperature. The temperature that Drosophila instinctively prefers has a function equivalent to the 'set point' temperature in mammals. Although various temperature-gated TRP channels have been discovered, molecular and cellular components in Drosophila brain responsible for determining the desired temperature remain unknown. We identified these components by performing a large-scale genetic screen of temperature preference behaviour (TPB) in Drosophila. In parallel, we mapped areas of the Drosophila brain controlling TPB by targeted inactivation of neurons with tetanus toxin and a potassium channel (Kir2.1) driven with various brain-specific GAL4s. Here we show that mushroom bodies (MBs) and the cyclic AMP-cAMP-dependent protein kinase A (cAMP-PKA) pathway are essential for controlling TPB. Furthermore, targeted expression of cAMP-PKA pathway components in only the MB was sufficient to rescue abnormal TPB of the corresponding mutants. Preferred temperatures were affected by the level of cAMP and PKA activity in the MBs in various PKA pathway mutants.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Drosophila melanogaster/fisiología , Cuerpos Pedunculados/metabolismo , Transducción de Señal , Temperatura , Animales , Temperatura Corporal/genética , Temperatura Corporal/fisiología , Regulación de la Temperatura Corporal/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Drosophila melanogaster/genética , Actividad Motora/genética , Actividad Motora/fisiología , Cuerpos Pedunculados/enzimología
2.
Nat Genet ; 37(3): 305-10, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15731759

RESUMEN

Several transient receptor potential channels were recently found to be activated by temperature stimuli in vitro. Their physiological and behavioral roles are largely unknown. From a temperature-preference behavior screen of 27,000 Drosophila melanogaster P-insertion mutants, we isolated a gene, named pyrexia (pyx), encoding a new transient receptor potential channel. Pyx was opened by temperatures above 40 degrees C in Xenopus laevis oocytes and HEK293T cells. It was ubiquitously expressed along the dendrites of a subset of peripheral nervous system neurons and was more permeable to K(+) than to Na(+). Although some pyx alleles resulted in abnormal temperature preferences, pyx null flies did not have significantly different temperature preferences than wild-type flies. But 60% of pyx null flies were paralyzed within 3 min of exposure to 40 degrees C, whereas only 9% of wild-type flies were paralyzed by the same stimulus. From these findings, we propose that the primary in vivo role of Pyx is to protect flies from high-temperature stress.


Asunto(s)
Proteínas de Unión a Calmodulina/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Fiebre/fisiopatología , Calor , Proteínas de la Membrana/fisiología , Secuencia de Aminoácidos , Animales , Proteínas de Unión a Calmodulina/química , Línea Celular , Clonación Molecular , ADN Complementario , Proteínas de Drosophila/química , Humanos , Inmunohistoquímica , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Canales de Potencial de Receptor Transitorio , Xenopus laevis
3.
Nature ; 447(7147): 1017-20, 2007 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-17486097

RESUMEN

AMP-activated protein kinase (AMPK, also known as SNF1A) has been primarily studied as a metabolic regulator that is activated in response to energy deprivation. Although there is relatively ample information on the biochemical characteristics of AMPK, not enough data exist on the in vivo function of the kinase. Here, using the Drosophila model system, we generated the first animal model with no AMPK activity and discovered physiological functions of the kinase. Surprisingly, AMPK-null mutants were lethal with severe abnormalities in cell polarity and mitosis, similar to those of lkb1-null mutants. Constitutive activation of AMPK restored many of the phenotypes of lkb1-null mutants, suggesting that AMPK mediates the polarity- and mitosis-controlling functions of the LKB1 serine/threonine kinase. Interestingly, the regulatory site of non-muscle myosin regulatory light chain (MRLC; also known as MLC2) was directly phosphorylated by AMPK. Moreover, the phosphomimetic mutant of MRLC rescued the AMPK-null defects in cell polarity and mitosis, suggesting MRLC is a critical downstream target of AMPK. Furthermore, the activation of AMPK by energy deprivation was sufficient to cause dramatic changes in cell shape, inducing complete polarization and brush border formation in the human LS174T cell line, through the phosphorylation of MRLC. Taken together, our results demonstrate that AMPK has highly conserved roles across metazoan species not only in the control of metabolism, but also in the regulation of cellular structures.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/enzimología , Metabolismo Energético , Complejos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Animales , Línea Celular , Polaridad Celular , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Humanos , Masculino , Mitosis , Complejos Multienzimáticos/deficiencia , Complejos Multienzimáticos/genética , Cadenas Ligeras de Miosina/metabolismo , Fenotipo , Fosforilación , Proteínas Quinasas/deficiencia , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética
4.
Nature ; 441(7097): 1157-61, 2006 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-16672980

RESUMEN

Autosomal recessive juvenile parkinsonism (AR-JP) is an early-onset form of Parkinson's disease characterized by motor disturbances and dopaminergic neurodegeneration. To address its underlying molecular pathogenesis, we generated and characterized loss-of-function mutants of Drosophila PTEN-induced putative kinase 1 (PINK1), a novel AR-JP-linked gene. Here, we show that PINK1 mutants exhibit indirect flight muscle and dopaminergic neuronal degeneration accompanied by locomotive defects. Furthermore, transmission electron microscopy analysis and a rescue experiment with Drosophila Bcl-2 demonstrated that mitochondrial dysfunction accounts for the degenerative changes in all phenotypes of PINK1 mutants. Notably, we also found that PINK1 mutants share marked phenotypic similarities with parkin mutants. Transgenic expression of Parkin markedly ameliorated all PINK1 loss-of-function phenotypes, but not vice versa, suggesting that Parkin functions downstream of PINK1. Taken together, our genetic evidence clearly establishes that Parkin and PINK1 act in a common pathway in maintaining mitochondrial integrity and function in both muscles and dopaminergic neurons.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Animales , Animales Modificados Genéticamente , Encéfalo/metabolismo , Encéfalo/patología , Dopamina/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Drosophila melanogaster/metabolismo , Prueba de Complementación Genética , Actividad Motora , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Mutación/genética , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Neuronas/metabolismo , Neuronas/patología , Fenotipo , Ubiquitina-Proteína Ligasas
5.
Neuron ; 48(2): 267-78, 2005 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-16242407

RESUMEN

The pigment-dispersing factor (PDF) is a neuropeptide controlling circadian behavioral rhythms in Drosophila, but its receptor is not yet known. From a large-scale temperature preference behavior screen in Drosophila, we isolated a P insertion mutant that preferred different temperatures during the day and night. This mutation, which we named han, reduced the transcript level of CG13758. We found that Han was expressed specifically in 13 pairs of circadian clock neurons in the adult brain. han null flies showed arrhythmic circadian behavior in constant darkness. The behavioral characteristics of han null mutants were similar to those of pdf null mutants. We also found that PDF binds specifically to S2 cells expressing Han, which results in the elevation of cAMP synthesis. Therefore, we herein propose that Han is a PDF receptor regulating circadian behavioral rhythm through coordination of activities of clock neurons.


Asunto(s)
Ritmo Circadiano/fisiología , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica/fisiología , Neuropéptidos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos/metabolismo , Conducta Animal , Unión Competitiva , Northern Blotting/métodos , Encéfalo/citología , Línea Celular , AMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/inmunología , Proteínas de Drosophila/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Inmunohistoquímica/métodos , Actividad Motora/fisiología , Mutación , Neuronas/metabolismo , Periodicidad , Unión Proteica/fisiología , ARN Mensajero/biosíntesis , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/inmunología , Receptores Acoplados a Proteínas G/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Alineación de Secuencia , Sensación Térmica/genética , Sensación Térmica/fisiología
6.
Br J Haematol ; 142(5): 827-30, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18510677

RESUMEN

Mesenchymal stromal cells (MSCs) have gained widespread popularity in cell therapy, but their development into clinical products has been impeded by the scarcity of cell-specific markers. We previously explored transcriptome and membrane proteome of MSCs, from which fibroblast activation protein alpha (FAP) was recognized as a prime surface marker candidate. The present study showed that FAP was constitutively expressed on MSCs, but not on other cells. FAP immunoselection yielded homogeneous MSCs from cryopreserved bone marrow (BM). These results suggest that FAP serves as a surface protein marker that can singly define MSCs from BM and possibly from other sources.


Asunto(s)
Células de la Médula Ósea , Gelatinasas/metabolismo , Proteínas de la Membrana/metabolismo , Células Madre Mesenquimatosas/metabolismo , Serina Endopeptidasas/metabolismo , Biomarcadores/metabolismo , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Endopeptidasas , Citometría de Flujo , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células del Estroma/metabolismo
7.
J Neurosci ; 26(27): 7245-56, 2006 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-16822982

RESUMEN

Temperature profoundly influences various life phenomena, and most animals have developed mechanisms to respond properly to environmental temperature fluctuations. To identify genes involved in sensing ambient temperature and in responding to its change, >27,000 independent P-element insertion mutants of Drosophila were screened. As a result, we found that defects in the genes encoding for proteins involved in histamine signaling [histidine decarboxylase (hdc), histamine-gated chloride channel subunit 1 (hisCl1), ora transientless (ort)] cause abnormal temperature preferences. The abnormal preferences shown in these mutants were restored by genetic and pharmacological rescue and could be reproduced in wild type using the histamine receptor inhibitors cimetidine and hydroxyzine. Spatial expression of these genes was observed in various brain regions including pars intercerebralis, fan-shaped body, and circadian clock neurons but not in dTRPA1-expressing neurons, an essential element for thermotaxis. We also found that the histaminergic mutants showed reduced tolerance for high temperature and enhanced tolerance for cold temperature. Together, these results suggest that histamine signaling may have important roles in modulating temperature preference and in controlling tolerance of low and high temperature.


Asunto(s)
Canales de Cloruro/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Histamina/metabolismo , Histidina Descarboxilasa/metabolismo , Receptores Histamínicos/metabolismo , Sensación Térmica/fisiología , Animales , Conducta Animal/fisiología , Canales de Cloruro/genética , Frío , Discriminación en Psicología/fisiología , Drosophila/genética , Proteínas de Drosophila/genética , Histidina Descarboxilasa/genética , Calor , Mutagénesis , Receptores Histamínicos/genética , Transducción de Señal/fisiología
8.
FEBS Lett ; 550(1-3): 5-10, 2003 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-12935877

RESUMEN

p53 is a representative tumor suppressor whose dysfunction is a major cause of human cancer syndrome. Here we isolated flies lacking Dmp53, which encodes the single Drosophila orthologue of mammalian p53 family. Dmp53 null mutants well developed into adults, only displaying mild defects in longevity and fertility. However, genomic stability and viability of Dmp53 mutants dramatically decreased upon ionizing irradiation. Moreover, mutating Dmp53 abolished irradiation-induced apoptosis and reaper induction. These results indicate that Dmp53 is a central component of DNA damage-dependent apoptotic signaling.


Asunto(s)
Apoptosis/fisiología , Daño del ADN/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Transducción de Señal , Transactivadores/metabolismo , Animales , Caspasas/metabolismo , Ciclo Celular/genética , Drosophila/embriología , Drosophila/efectos de la radiación , Proteínas de Drosophila/genética , Proteínas de Drosophila/efectos de la radiación , Embrión no Mamífero/efectos de la radiación , Activación Enzimática , Femenino , Fertilidad/genética , Regulación del Desarrollo de la Expresión Génica , Longevidad/genética , Mutación , Regiones Promotoras Genéticas , Radiación Ionizante , Transactivadores/genética , Proteína p53 Supresora de Tumor , Alas de Animales/crecimiento & desarrollo , Alas de Animales/patología , Alas de Animales/efectos de la radiación
9.
PLoS One ; 6(12): e29800, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22216356

RESUMEN

Perception of temperature is an important brain function for organisms to survive. Evidence suggests that temperature preference behavior (TPB) in Drosophila melanogaster, one of poikilothermal animals, is regulated by cAMP-dependent protein kinase (PKA) signaling in mushroom bodies of the brain. However, downstream targets for the PKA signaling in this behavior have not been identified. From a genome-wide search for the genes regulated by PKA activity in the mushroom bodies, we identified the cyp6a17 Cytochrome P450 gene as a new target for PKA. Our detailed analysis of mutants by genetic, molecular and behavioral assays shows that cyp6a17 is essential for temperature preference behavior. cyp6a17 expression is enriched in the mushroom bodies of the adult brain. Tissue-specific knockdown and rescue experiments demonstrate that cyp6a17 is required in the mushroom bodies for normal temperature preference behavior. This is the first study, to our knowledge, to show PKA-dependent expression of a cytochrome P450 gene in the mushroom bodies and its role as a key factor for temperature preference behavior. Taken together, this study reveals a new PKA-Cytochrome P450 pathway that regulates the temperature preference behavior.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Drosophila melanogaster/fisiología , Temperatura , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Cuerpos Pedunculados/enzimología , Mutación
10.
Genetics ; 188(3): 731-43, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21515576

RESUMEN

The Drosophila Gene Disruption Project (GDP) has created a public collection of mutant strains containing single transposon insertions associated with different genes. These strains often disrupt gene function directly, allow production of new alleles, and have many other applications for analyzing gene function. Here we describe the addition of ∼7600 new strains, which were selected from >140,000 additional P or piggyBac element integrations and 12,500 newly generated insertions of the Minos transposon. These additions nearly double the size of the collection and increase the number of tagged genes to at least 9440, approximately two-thirds of all annotated protein-coding genes. We also compare the site specificity of the three major transposons used in the project. All three elements insert only rarely within many Polycomb-regulated regions, a property that may contribute to the origin of "transposon-free regions" (TFRs) in metazoan genomes. Within other genomic regions, Minos transposes essentially at random, whereas P or piggyBac elements display distinctive hotspots and coldspots. P elements, as previously shown, have a strong preference for promoters. In contrast, piggyBac site selectivity suggests that it has evolved to reduce deleterious and increase adaptive changes in host gene expression. The propensity of Minos to integrate broadly makes possible a hybrid finishing strategy for the project that will bring >95% of Drosophila genes under experimental control within their native genomic contexts.


Asunto(s)
Elementos Transponibles de ADN , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genes de Insecto , Mutagénesis Insercional/métodos , Alelos , Animales , Expresión Génica , Genoma de los Insectos , Modelos Genéticos , Mutación , Fenotipo
11.
Neurobiol Aging ; 29(1): 84-94, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17030474

RESUMEN

Hereditary spastic paraplegias (HSPs) are human genetic disorders causing increased stiffness and overactive muscle reflexes in the lower extremities. atlastin (atl) is one of the major genes in which mutations result in HSP. We generated a Drosophila model of HSP that has a null mutation in atl. As they aged, atl null flies were paralyzed by mechanical shock such as bumping or vortexing. Furthermore, the flies showed age-dependent degeneration of dopaminergic neurons. These phenotypes were rescued by targeted expression of atl in dopaminergic neurons or feeding L-DOPA or SK&F 38393, an agonist of dopamine receptor. Our data raised the possibility that one of the causes of HSP disease symptoms in human patients with alt mutations is malfunction or degeneration of dopaminergic neurons.


Asunto(s)
Envejecimiento , Dopamina/metabolismo , GTP Fosfohidrolasas/deficiencia , Regulación de la Expresión Génica/genética , Neuronas/patología , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/administración & dosificación , Animales , Animales Modificados Genéticamente , Muerte Celular/genética , Proliferación Celular , Agonistas de Dopamina/administración & dosificación , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrión no Mamífero/fisiología , Proteínas de Unión al GTP , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Levodopa/administración & dosificación , Masculino , Proteínas de la Membrana , Neuronas/efectos de los fármacos , Alineación de Secuencia/métodos , Tirosina 3-Monooxigenasa/genética
12.
EMBO J ; 26(1): 113-22, 2007 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-17170702

RESUMEN

Synoviolin, also called HRD1, is an E3 ubiquitin ligase and is implicated in endoplasmic reticulum -associated degradation. In mammals, Synoviolin plays crucial roles in various physiological and pathological processes, including embryogenesis and the pathogenesis of arthropathy. However, little is known about the molecular mechanisms of Synoviolin in these actions. To clarify these issues, we analyzed the profile of protein expression in synoviolin-null cells. Here, we report that Synoviolin targets tumor suppressor gene p53 for ubiquitination. Synoviolin sequestrated and metabolized p53 in the cytoplasm and negatively regulated its cellular level and biological functions, including transcription, cell cycle regulation and apoptosis. Furthermore, these p53 regulatory functions of Synoviolin were irrelevant to other E3 ubiquitin ligases for p53, such as MDM2, Pirh2 and Cop1, which form autoregulatory feedback loops. Our results provide novel insights into p53 signaling mediated by Synoviolin.


Asunto(s)
Citoplasma/metabolismo , Proteína p53 Supresora de Tumor/química , Ubiquitina-Proteína Ligasas/fisiología , Animales , Línea Celular Tumoral , Drosophila melanogaster , Retículo Endoplásmico/metabolismo , Humanos , Plásmidos/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Transducción de Señal , Transfección , Ubiquitina/química , Enzimas Ubiquitina-Conjugadoras/química , Ubiquitina-Proteína Ligasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA