Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(32): 19190-19200, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32723828

RESUMEN

The 26S proteasome, a self-compartmentalized protease complex, plays a crucial role in protein quality control. Multiple levels of regulatory systems modulate proteasomal activity for substrate hydrolysis. However, the destruction mechanism of mammalian proteasomes is poorly understood. We found that inhibited proteasomes are sequestered into the insoluble aggresome via HDAC6- and dynein-mediated transport. These proteasomes colocalized with the autophagic receptor SQSTM1 and cleared through selective macroautophagy, linking aggresomal segregation to autophagic degradation. This proteaphagic pathway was counterbalanced with the recovery of proteasomal activity and was critical for reducing cellular proteasomal stress. Changes in associated proteins and polyubiquitylation on inhibited 26S proteasomes participated in the targeting mechanism to the aggresome and autophagosome. The STUB1 E3 Ub ligase specifically ubiquitylated purified human proteasomes in vitro, mainly via Lys63-linked chains. Genetic and chemical inhibition of STUB1 activity significantly impaired proteasome processing and reduced resistance to proteasomal stress. These data demonstrate that aggresomal sequestration is the crucial upstream event for proteasome quality control and overall protein homeostasis in mammals.


Asunto(s)
Macroautofagia , Orgánulos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Células A549 , Humanos , Orgánulos/genética , Complejo de la Endopetidasa Proteasomal/genética , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
2.
Nucleic Acids Res ; 48(13): 7584-7594, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32544231

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins provide adaptive immunity to prokaryotes against invading phages and plasmids. As a countermeasure, phages have evolved anti-CRISPR (Acr) proteins that neutralize the CRISPR immunity. AcrIIA5, isolated from a virulent phage of Streptococcus thermophilus, strongly inhibits diverse Cas9 homologs, but the molecular mechanism underlying the Cas9 inhibition remains unknown. Here, we report the solution structure of AcrIIA5, which features a novel α/ß fold connected to an N-terminal intrinsically disordered region (IDR). Remarkably, truncation of the N-terminal IDR abrogates the inhibitory activity against Cas9, revealing that the IDR is essential for Cas9 inhibition by AcrIIA5. Progressive truncations and mutations of the IDR illustrate that the disordered region not only modulates the association between AcrIIA5 and Cas9-sgRNA, but also alters the catalytic efficiency of the inhibitory complex. The length of IDR is critical for the Cas9-sgRNA recognition by AcrIIA5, whereas the charge content of IDR dictates the inhibitory activity. Conformational plasticity of IDR may be linked to the broad-spectrum inhibition of Cas9 homologs by AcrIIA5. Identification of the IDR as the main determinant for Cas9 inhibition expands the inventory of phage anti-CRISPR mechanisms.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Virales/química , Bacteriófagos/química , Bacteriófagos/patogenicidad , Proteínas Intrínsecamente Desordenadas/metabolismo , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Dominios Proteicos , Streptococcus thermophilus/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo
3.
J Am Chem Soc ; 140(28): 8681-8689, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29913063

RESUMEN

Oxygen-Cu (O-Cu) combination catalysts have recently achieved highly improved selectivity for ethylene production from the electrochemical CO2 reduction reaction (CO2RR). In this study, we developed anodized copper (AN-Cu) Cu(OH)2 catalysts by a simple electrochemical synthesis method and achieved ∼40% Faradaic efficiency for ethylene production, and high stability over 40 h. Notably, the initial reduction conditions applied to AN-Cu were critical to achieving selective and stable ethylene production activity from the CO2RR, as the initial reduction condition affects the structures and chemical states, crucial for highly selective and stable ethylene production over methane. A highly negative reduction potential produced a catalyst maintaining long-term stability for the selective production of ethylene over methane, and a small amount of Cu(OH)2 was still observed on the catalyst surface. Meanwhile, when a mild reduction condition was applied to the AN-Cu, the Cu(OH)2 crystal structure and mixed states disappeared on the catalyst, becoming more favorable to methane production after few hours. These results show the selectivity of ethylene to methane in O-Cu combination catalysts is influenced by the electrochemical reduction environment related to the mixed valences. This will provide new strategies to improve durability of O-Cu combination catalysts for C-C coupling products from electrochemical CO2 conversion.

4.
Anal Chem ; 89(4): 2390-2397, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28192940

RESUMEN

We employed modified glass nanocapillaries to investigate interactions between the RNA-binding protein, known as cell carcinoma antigen recognized by T cells-3 (SART3), and the noncoding spliceosome component, U6 small nuclear RNA (snRNA), at the single-molecule level. We functionalized the nanocapillaries with U6 snRNA fragments, which were hybridized to DNA molecules and then covalently attached to the nanocapillary surface. When transported through the modified nanocapillaries, two different SART3-derived constructs, HAT-RRM1-RRM2 and RRM1-RRM2, exhibited resistive ionic current pulses with different dwell times, which represented their different binding affinities to tethered U6 snRNAs. The dissociation constants (KD), estimated from the bias voltage dependence of translocation events, were approximately 1.9 µM and 201 µM for HAT-RRM1-RRM2 and RRM1-RRM2, respectively. These values were comparable to corresponding values obtained with isothermal titration calorimetry, demonstrating that the modified glass nanocapillaries are applicable to analyses of protein-ligand interactions at the single-molecule level.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Calorimetría , Nanotubos/química , ARN Nuclear Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Antígenos de Neoplasias/química , Electricidad , Humanos , Concentración de Iones de Hidrógeno , Cinética , Péptidos/química , Péptidos/metabolismo , Proteínas de Unión al ARN/química
5.
Biochem Biophys Res Commun ; 483(1): 332-338, 2017 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-28017722

RESUMEN

S100A5 is a calcium-binding protein of S100 family, which represents a major ligand to the receptor for advanced glycation end product (RAGE), a pattern recognition receptor engaged in diverse pathological processes. Here we have characterized calcium binding of S100A5 and the complex formation between S100A5 and RAGE using calorimetry and NMR spectroscopy. S100A5 binds to calcium ions in a sequential manner with the equilibrium dissociation constants (KD) of 1.3 µM and 3.5 µM, which corresponds to the calcium-binding at the C-terminal and N-terminal EF-hands. Upon calcium binding, S100A5 interacts with the V domain of RAGE (RAGE-v) to form a heterotrimer (KD ∼5.9 µM) that is distinct among the S100 family proteins. Chemical shift perturbation data from NMR titration experiments indicates that S100A5 employs the periphery of the dimer interface to interact with RAGE-v. Distinct binding mode and stoichiometry of RAGE against different S100 family proteins could be important to modulate diverse RAGE signaling.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Calcio/química , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas S100/metabolismo , Calorimetría , Cromatografía , Motivos EF Hand , Escherichia coli/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Ligandos , Espectroscopía de Resonancia Magnética , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Estructura Terciaria de Proteína , Transducción de Señal , Termodinámica
6.
Biochem Biophys Res Commun ; 484(4): 839-844, 2017 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-28161630

RESUMEN

Internal and environmental cues, including ambient temperature changes, regulate the timing of flowering in plants. Arabidopsis miR156 represses flowering and plays an important role in the regulation of temperature-responsive flowering. However, the molecular basis of miR156 processing at lower temperatures remains largely unknown. Here, we performed nuclear magnetic resonance studies to investigate the base-pair opening dynamics of model RNAs at 16 °C and investigated the in vivo effects of the mutant RNAs on temperature-responsive flowering. The A9C and A10CG mutations in the B5 bulge of the lower stem of pri-miR156a stabilized the C15∙G98 and U16∙A97 base-pairs at the cleavage site of pri-miR156a at 16 °C. Consistent with this, production of mature miR156 was severely affected in plants overexpressing the A9C and A10CG constructs and these plants exhibited almost no delay in flowering at 16 °C. The A10G and A9AC mutations did not strongly affect C15∙G98 and U16∙A97 base-pairs at 16 °C, and plants overexpressing A10G and A9AC mutants of miR156 produced more mature miR156 than plants overexpressing the A9C and A10CG mutants and showed a strong delay in flowering at 16 °C. Interestingly, the A9AC mutation had distinct effects on the opening dynamics of the C15∙G98 and U16∙A97 base-pairs between 16 °C and 23 °C, and plants expressing the A9AC mutant miR156 showed only a moderate delay in flowering at 16 °C. Based on these results, we propose that fine-tuning of the base-pair stability at the cleavage site is essential for efficient processing of pri-miR156a at a low temperature and for reduced flowering sensitivity to ambient temperature changes.


Asunto(s)
Adaptación Fisiológica/genética , Arabidopsis/genética , Disparidad de Par Base/genética , Emparejamiento Base/genética , Flores/genética , MicroARNs/genética , Sensación Térmica/genética , Secuencia de Bases , Datos de Secuencia Molecular , Mutación , Temperatura
7.
J Am Chem Soc ; 138(3): 857-67, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26771315

RESUMEN

MicroRNA-155, one of the most potent miRNAs that suppress apoptosis in human cancer, is overexpressed in numerous cancers, and it displays oncogenic activity. Peptide microarrays, constructed by immobilizing 185 peptides containing the C-terminal hydrazide onto epoxide-derivatized glass slides, were employed to evaluate peptide binding properties of pre-miRNA-155 and to identify its binding peptides. Two peptides, which were identified based on the results of peptide microarray and in vitro Dicer inhibition studies, were found to inhibit generation of mature miRNA-155 catalyzed by Dicer and to enhance expression of miRNA-155 target genes in cells. In addition, the results of cell experiments indicate that peptide inhibitors promote apoptotic cell death via a caspase-dependent pathway. Finally, observations made in NMR and molecular modeling studies suggest that a peptide inhibitor preferentially binds to the upper bulge and apical stem-loop region of pre-miRNA-155, thereby suppressing Dicer-mediated miRNA-155 processing.


Asunto(s)
Apoptosis/efectos de los fármacos , MicroARNs/metabolismo , Péptidos/farmacología , Análisis por Matrices de Proteínas , Sitios de Unión , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Células MCF-7 , MicroARNs/antagonistas & inhibidores , MicroARNs/química , Modelos Moleculares , Estructura Molecular , Péptidos/química , Péptidos/metabolismo
8.
Neurochem Res ; 41(4): 666-76, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26464215

RESUMEN

Experimental autoimmune encephalomyelitis (EAE) is commonly induced with myelin oligodendrocyte glycoprotein (MOG)35-55; occasionally, EAE is not well induced despite MOG35-55 immunization. To confirm that EAE induction varies with difference in MOG35-55 properties, we compared three MOG35-55 from different commercial sources, which are MOG-A, MOG-B, and MOG-C. The peptides induced EAE disease with 100, 40, and 20 % incidence, respectively. Compared with others, MOG-A showed higher peptide purity (99.2 %) and content (92.2 %) and presented a sheet shape with additional sodium and chloride chemical elements. In MOG-A-treated group, MMP-9 activity and IL-6 levels were considerably higher than the other groups in CNS tissues, and significantly increased VCAM-1, IFN-γ, and decreased IL-4 were also shown compared to MOG-B- and/or MOG-C-treated group. In conclusion, the immunological and toxicological changes by the difference in MOG35-55 properties modulate EAE induction, and MOG35-55 which affects MMP-9 activity and IL-6 levels may be the most effective EAE-inducing antigen. This study can be potentially applied by researchers using MOG35-55 peptide and manufacturers for MOG35-55 synthesis.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Interleucina-6/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Glicoproteína Mielina-Oligodendrócito/inmunología , Animales , Encefalomielitis Autoinmune Experimental/metabolismo , Femenino , Ratones Endogámicos C57BL , Glicoproteína Mielina-Oligodendrócito/química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/inmunología
9.
Nucleic Acids Res ; 42(5): 3395-408, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24335084

RESUMEN

Telomerase is a unique reverse transcriptase that maintains the 3' ends of eukaryotic chromosomes by adding tandem telomeric repeats. The RNA subunit (TR) of vertebrate telomerase provides a template for reverse transcription, contained within the conserved template/pseudoknot domain, and a conserved regions 4 and 5 (CR4/5) domain, all essential for catalytic activity. We report the nuclear magnetic resonance (NMR) solution structure of the full-length CR4/5 domain from the teleost fish medaka (Oryzias latipes). Three helices emanate from a structured internal loop, forming a Y-shaped structure, where helix P6 stacks on P5 and helix P6.1 points away from P6. The relative orientations of the three helices are Mg2+ dependent and dynamic. Although the three-way junction is structured and has unexpected base pairs, telomerase activity assays with nucleotide substitutions and deletions in CR4/5 indicate that none of these are essential for activity. The results suggest that the junction is likely to change conformation in complex with telomerase reverse transcriptase and that it provides a flexible scaffold that allows P6 and P6.1 to correctly fold and interact with telomerase reverse transcriptase.


Asunto(s)
Oryzias/genética , ARN/química , Telomerasa/metabolismo , Animales , Magnesio/química , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico , Telomerasa/química
10.
Proc Natl Acad Sci U S A ; 110(27): 10970-5, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23776224

RESUMEN

Telomerase is a ribonucleoprotein complex that extends the 3' ends of linear chromosomes. The specialized telomerase reverse transcriptase requires a multidomain RNA (telomerase RNA, TER), which includes an integral RNA template and functionally important template-adjacent pseudoknot. The structure of the human TER pseudoknot revealed that the loops interact with the stems to form a triple helix shown to be important for activity in vitro. A similar triple helix has been predicted to form in diverse fungi TER pseudoknots. The solution NMR structure of the Kluyveromyces lactis pseudoknot, presented here, reveals that it contains a long pyrimidine motif triple helix with unexpected features that include three individual bulge nucleotides and a C(+)•G-C triple adjacent to a stem 2-loop 2 junction. Despite significant differences in sequence and base triples, the 3D shape of the human and K. lactis TER pseudoknots are remarkably similar. Analysis of the effects of nucleotide substitutions on cell growth and telomere lengths provides evidence that this conserved structure forms in endogenously assembled telomerase and is essential for telomerase function in vivo.


Asunto(s)
Kluyveromyces/enzimología , Conformación de Ácido Nucleico , ARN Bacteriano/química , ARN/química , Telomerasa/química , Secuencia de Bases , Humanos , Kluyveromyces/genética , Modelos Moleculares , Mutagénesis , Resonancia Magnética Nuclear Biomolecular , Pirimidinas/química , ARN/genética , Estabilidad del ARN , ARN Bacteriano/genética , ARN de Hongos/química , ARN de Hongos/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Telomerasa/genética
11.
J Org Chem ; 79(16): 7277-85, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25052375

RESUMEN

The metal-free thermal protodeboronation of various electron-rich arene boronic acids was studied. Several reaction parameters controlling this protodeboronation, such as solvent, temperature, and a proton source, have been investigated. On the basis of these studies, suitable reaction conditions for protodeboronation of several types of electron-rich arene boronic acids were provided. On the basis of this protodeboronation, a new protocol for the synthesis of ortho-functionalized electron-rich arenes from these boronic acids was developed using the boronic acid moiety as a blocking group in the electrophilic aromatic substitution reaction, followed by the removal of the boronic acid moiety via thermal protodeboronation. Mechanistic studies suggested that this protodeboronation might proceed via the complex formation of a boronic acid with a proton source, followed by the carbon-boron bond fission through σ-bond metathesis, to afford the corresponding arene compound and boric acid.

12.
Proc Natl Acad Sci U S A ; 108(51): 20325-32, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-21844345

RESUMEN

Telomerase is a unique reverse transcriptase that catalyzes the addition of telomere DNA repeats onto the 3' ends of linear chromosomes and plays a critical role in maintaining genome stability. Unlike other reverse transcriptases, telomerase is unique in that it is a ribonucleoprotein complex, where the RNA component [telomerase RNA (TR)] not only provides the template for the synthesis of telomere DNA repeats but also plays essential roles in catalysis, accumulation, TR 3'-end processing, localization, and holoenzyme assembly. Biochemical studies have identified TR elements essential for catalysis that share remarkably conserved secondary structures across different species as well as species-specific domains for other functions, paving the way for high-resolution structure determination of TRs. Over the past decade, structures of key elements from the core, conserved regions 4 and 5, and small Cajal body specific RNA domains of human TR have emerged, providing significant insights into the roles of these RNA elements in telomerase function. Structures of all helical elements of the core domain have been recently reported, providing the basis for a high-resolution model of the complete core domain. We review this progress to determine the overall architecture of human telomerase RNA.


Asunto(s)
ARN/genética , Telomerasa/genética , Secuencia de Bases , Catálisis , Cuerpos Enrollados/genética , ADN/genética , Humanos , Espectroscopía de Resonancia Magnética/métodos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN/metabolismo , Ribonucleoproteínas/genética , Telomerasa/metabolismo
13.
Nat Commun ; 15(1): 6984, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143123

RESUMEN

Transcription factors specifically bind to their consensus sequence motifs and regulate transcription efficiency. Transcription factors are also able to non-specifically contact the phosphate backbone of DNA through electrostatic interaction. The homeodomain of Meis1 TALE human transcription factor (Meis1-HD) recognizes its target DNA sequences via two DNA contact regions, the L1-α1 region and the α3 helix (specific binding mode). This study demonstrates that the non-specific binding mode of Meis1-HD is the energetically favored process during DNA binding, achieved by the interaction of the L1-α1 region with the phosphate backbone. An NMR dynamics study suggests that non-specific binding might set up an intermediate structure which can then rapidly and easily find the consensus region on a long section of genomic DNA in a facilitated binding process. Structural analysis using NMR and molecular dynamics shows that key structural distortions in the Meis1-HD-DNA complex are induced by various single nucleotide mutations in the consensus sequence, resulting in decreased DNA binding affinity. Collectively, our results elucidate the detailed molecular mechanism of how Meis1-HD recognizes single nucleotide mutations within its consensus sequence: (i) through the conformational features of the α3 helix; and (ii) by the dynamic features (rigid or flexible) of the L1 loop and the α3 helix. These findings enhance our understanding of how single nucleotide mutations in transcription factor consensus sequences lead to dysfunctional transcription and, ultimately, human disease.


Asunto(s)
ADN , Simulación de Dinámica Molecular , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Unión Proteica , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Humanos , ADN/metabolismo , ADN/química , ADN/genética , Sitios de Unión , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/química , Mutación , Secuencia de Consenso , Secuencia de Bases
14.
Adv Mater ; 36(19): e2308837, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38351715

RESUMEN

As large molecular tertiary structures, some proteins can act as small robots that find, bind, and chaperone target protein clients, showing the potential to serve as smart building blocks in self-assembly fields. Instead of using such intrinsic functions, most self-assembly methodologies for proteins aim for de novo-designed structures with accurate geometric assemblies, which can limit procedural flexibility. Here, a strategy enabling polymorphic clustering of quaternary proteins, exhibiting simplicity and flexibility of self-assembling paths for proteins in forming monodisperse quaternary cage particles is presented. It is proposed that the enzyme protomer DegQ, previously solved at low resolution, may potentially be usable as a threefold symmetric building block, which can form polyhedral cages incorporated by the chaperone action of DegQ in the presence of protein clients. To obtain highly monodisperse cage particles, soft, and hence, less resistive client proteins, which can program the inherent chaperone activity of DegQ to efficient formations of polymorphic cages, depending on the size of clients are utilized. By reconstructing the atomic resolution cryogenic electron microscopy DegQ structures using obtained 12- and 24-meric clusters, the polymorphic clustering of DegQ enzymes is validated in terms of soft and rigid domains, which will provide effective routes for protein self-assemblies with procedural flexibility.


Asunto(s)
Estructura Cuaternaria de Proteína , Serina Endopeptidasas , Microscopía por Crioelectrón , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo
15.
Proc Natl Acad Sci U S A ; 107(44): 18761-8, 2010 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-20966348

RESUMEN

Telomerase is a unique ribonucleoprotein complex that catalyzes the addition of telomeric DNA repeats onto the 3' ends of linear chromosomes. All vertebrate telomerase RNAs contain a catalytically essential core domain that includes the template and a pseudoknot with extended helical subdomains. Within these helical regions is an asymmetric 5-nt internal bulge loop (J2a/b) flanked by helices (P2a and P2b) that is highly conserved in its location but not sequence. NMR structure determination reveals that J2a/b forms a defined S-shape and creates an ∼90 ° bend with a surprisingly low twist (∼10 °) between the flanking helices. A search of RNA structures revealed only one other example of a 5-nt bulge, from hepatitis C virus internal ribosome entry site, with a different sequence but the same structure. J2a/b is intrinsically flexible but the interhelical motions across the loop are remarkably restricted. Nucleotide substitutions in J2a/b that affect the bend angle, direction, and interhelical dynamics are correlated with telomerase activity. Based on the structures of P2ab (J2a/b and flanking helices), the conserved region of the pseudoknot (P2b/P3, previously determined) and the remaining helical segment (P2a.1-J2a.1 refined using residual dipolar couplings and the modeling program MC-Sym) we have calculated an NMR-based model of the full-length pseudoknot. The model and dynamics analysis show that J2a/b serves as a dominant structural and dynamical element in defining the overall topology of the core domain, and suggest that interhelical motions in P2ab facilitate nucleotide addition along the template and template translocation.


Asunto(s)
Modelos Moleculares , Conformación de Ácido Nucleico , ARN/química , Telomerasa/química , Humanos , Espectroscopía de Resonancia Magnética/métodos
16.
Commun Chem ; 6(1): 282, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123721

RESUMEN

The direct oxidation of methane to methanol has been spotlighted research for decades, but has never been commercialized. This study introduces cost-effective process for co-producing methanol and sulfuric acid through a direct oxidation of methane. In the initial phase, methane oxidation forms methyl bisulfate (CH3OSO3H), then transformed into methyl trifluoroacetate (CF3CO2CH3) via esterification, and hydrolyzed into methanol. This approach eliminates the need for energy-intensive separation of methyl bisulfate from sulfuric acid by replacing the former with methyl trifluoroacetate. Through the superstructure optimization, our sequential process reduces the levelized cost of methanol to nearly two-fold reduction from the current market price. Importantly, this process demonstrates adaptability to smaller gas fields, assuring its economical operation across a broad range of gas fields. The broader application of this process could substantially mitigate global warming by utilizing methane, leading to a significantly more sustainable and economically beneficial methanol industry.

17.
Sci Adv ; 9(16): eadf8582, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37083534

RESUMEN

Aurora kinase A (AURKA) performs critical functions in mitosis. Thus, the activity and subcellular localization of AURKA are tightly regulated and depend on diverse factors including interactions with the multiple binding cofactors. How these different cofactors regulate AURKA to elicit different levels of activity at distinct subcellular locations and times is poorly understood. Here, we identified a conserved region of CEP192, the major cofactor of AURKA, that mediates the interaction with AURKA. Quantitative binding studies were performed to map the interactions of a conserved helix (Helix-1) within CEP192. The crystal structure of Helix-1 bound to AURKA revealed a distinct binding site that is different from other cofactor proteins such as TPX2. Inhibiting the interaction between Helix-1 and AURKA in cells led to the mitotic defects, demonstrating the importance of the interaction. Collectively, we revealed a structural basis for the CEP192-mediated AURKA regulation at the centrosome, which is distinct from TPX2-mediated regulation on the spindle microtubule.


Asunto(s)
Aurora Quinasa A , Huso Acromático , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Huso Acromático/metabolismo , Centrosoma/metabolismo , Microtúbulos/metabolismo , Mitosis
18.
Nucleic Acids Res ; 38(19): 6746-56, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20554853

RESUMEN

Telomerase extends the 3'-ends of linear chromosomes by adding conserved telomeric DNA repeats and is essential for cell proliferation and genomic stability. Telomerases from all organisms contain a telomerase reverse transcriptase and a telomerase RNA (TER), which together provide the minimal functional elements for catalytic activity in vitro. The RNA component of many functional ribonucleoproteins contains modified nucleotides, including conserved pseudouridines (Ψs) that can have subtle effects on structure and activity. We have identified potential Ψ modification sites in human TER. Two of the predicted Ψs are located in the loop of the essential P6.1 hairpin from the CR4-CR5 domain that is critical for telomerase catalytic activity. We investigated the effect of P6.1 pseudouridylation on its solution NMR structure, thermodynamic stability of folding and telomerase activation in vitro. The pseudouridylated P6.1 has a significantly different loop structure and increase in stability compared to the unmodified P6.1. The extent of loop nucleotide interaction with adjacent residues more closely parallels the extent of loop nucleotide evolutionary sequence conservation in the Ψ-modified P6.1 structure. Pseudouridine-modification of P6.1 slightly attenuates telomerase activity but slightly increases processivity in vitro. Our results suggest that Ψs could have a subtle influence on human telomerase activity via impact on TER-TERT or TER-TER interactions.


Asunto(s)
Seudouridina/química , ARN/química , Telomerasa/química , Biocatálisis , Humanos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico , ARN/metabolismo , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , Telomerasa/metabolismo
19.
JACS Au ; 1(11): 2070-2079, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34841418

RESUMEN

Activation entropy (ΔS ‡) is not normally considered the main factor in determining the reactivity of unimolecular reactions. Here, we report that the intramolecular degradation of six-membered ring compounds is mainly determined by the ΔS ‡, which is strongly influenced by the ring-flipping motion and substituent geometry. Starting from the unique difference between the pH-dependent degradation kinetics of geometric isomers of 1,2-cyclohexanecarboxylic acid amide (1,2-CHCAA), where only the cis isomer can readily degrade under weakly acidic conditions (pH < 5.5), we found that the difference originated from the large difference in ΔS ‡ of 16.02 cal·mol-1·K-1. While cis-1,2-CHCAA maintains a preference for the classical chair cyclohexane conformation, trans-1,2-CHCAA shows dynamic interconversion between the chair and twisted boat conformations, which was supported by both MD simulations and VT-NMR analysis. Steric repulsion between the bulky 1,2-substituents of the trans isomer is one of the main reasons for the reduced energy barrier between ring conformations that facilitates dynamic ring inversion motions. Consequently, the more dynamic trans isomer exhibits much a larger loss in entropy during the activation process due to the prepositioning of the reactant than the cis isomer, and the pH-dependent degradation of the trans isomer is effectively suppressed. When the ring inversion motion is inhibited by an additional methyl substituent on the cyclohexane ring, the pH degradability can be dramatically enhanced for even the trans isomer. This study shows a unique example in which spatial arrangement and dynamic properties can strongly influence molecular reactivity in unimolecular reactions, and it will be helpful for the future design of a reactive structure depending on dynamic conformational changes.

20.
ACS Nano ; 15(1): 979-988, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33332089

RESUMEN

Chiral inorganic nanomaterials have revealed opportunities in various fields owing to their strong light-matter interactions. In particular, chiral metal oxide nanomaterials that can control light and biochemical reactions have been highlighted due to their catalytic activity and biocompatibility. In this study, we present the synthesis of chiral cobalt oxide nanoparticles with a g-factor of 0.01 in the UV-visible region using l- and d-Tyr-Tyr-Cys ligands. The conformation of the Tyr-Tyr-Cys peptide on the nanoparticle surfaces was identified by 2D NMR spectroscopy analysis. In addition, the sequence effect of Tyr-Tyr-Cys developing chiral nanoparticles was analyzed. The revealed peptide structure, along with the experimental results, demonstrate the important role of the thiol group and carboxyl group of the Tyr-Tyr-Cys ligand in chirality evolution. Importantly, due to the magnetic properties of chiral cobalt oxide nanoparticles and their strong absorption in the UV region, the circular dichroism (CD) responses can be dramatically modulated under an external magnetic field.


Asunto(s)
Nanopartículas , Cobalto , Conformación Molecular , Óxidos , Péptidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA