Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 312
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 630(8016): 329-334, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867129

RESUMEN

Artificial Kitaev chains can be used to engineer Majorana bound states (MBSs) in superconductor-semiconductor hybrids1-4. In this work, we realize a two-site Kitaev chain in a two-dimensional electron gas by coupling two quantum dots through a region proximitized by a superconductor. We demonstrate systematic control over inter-dot couplings through in-plane rotations of the magnetic field and via electrostatic gating of the proximitized region. This allows us to tune the system to sweet spots in parameter space, where robust correlated zero-bias conductance peaks are observed in tunnelling spectroscopy. To study the extent of hybridization between localized MBSs, we probe the evolution of the energy spectrum with magnetic field and estimate the Majorana polarization, an important metric for Majorana-based qubits5,6. The implementation of a Kitaev chain on a scalable and flexible two-dimensional platform provides a realistic path towards more advanced experiments that require manipulation and readout of multiple MBSs.

2.
Nature ; 625(7995): 483-488, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38233620

RESUMEN

Heavy-fermion metals are prototype systems for observing emergent quantum phases driven by electronic interactions1-6. A long-standing aspiration is the dimensional reduction of these materials to exert control over their quantum phases7-11, which remains a significant challenge because traditional intermetallic heavy-fermion compounds have three-dimensional atomic and electronic structures. Here we report comprehensive thermodynamic and spectroscopic evidence of an antiferromagnetically ordered heavy-fermion ground state in CeSiI, an intermetallic comprising two-dimensional (2D) metallic sheets held together by weak interlayer van der Waals (vdW) interactions. Owing to its vdW nature, CeSiI has a quasi-2D electronic structure, and we can control its physical dimension through exfoliation. The emergence of coherent hybridization of f and conduction electrons at low temperature is supported by the temperature evolution of angle-resolved photoemission and scanning tunnelling spectra near the Fermi level and by heat capacity measurements. Electrical transport measurements on few-layer flakes reveal heavy-fermion behaviour and magnetic order down to the ultra-thin regime. Our work establishes CeSiI and related materials as a unique platform for studying dimensionally confined heavy fermions in bulk crystals and employing 2D device fabrication techniques and vdW heterostructures12 to manipulate the interplay between Kondo screening, magnetic order and proximity effects.

3.
Nature ; 613(7942): 71-76, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36600065

RESUMEN

The two natural allotropes of carbon, diamond and graphite, are extended networks of sp3-hybridized and sp2-hybridized atoms, respectively1. By mixing different hybridizations and geometries of carbon, one could conceptually construct countless synthetic allotropes. Here we introduce graphullerene, a two-dimensional crystalline polymer of C60 that bridges the gulf between molecular and extended carbon materials. Its constituent fullerene subunits arrange hexagonally in a covalently interconnected molecular sheet. We report charge-neutral, purely carbon-based macroscopic crystals that are large enough to be mechanically exfoliated to produce molecularly thin flakes with clean interfaces-a critical requirement for the creation of heterostructures and optoelectronic devices2. The synthesis entails growing single crystals of layered polymeric (Mg4C60)∞ by chemical vapour transport and subsequently removing the magnesium with dilute acid. We explore the thermal conductivity of this material and find it to be much higher than that of molecular C60, which is a consequence of the in-plane covalent bonding. Furthermore, imaging few-layer graphullerene flakes using transmission electron microscopy and near-field nano-photoluminescence spectroscopy reveals the existence of moiré-like superlattices3. More broadly, the synthesis of extended carbon structures by polymerization of molecular precursors charts a clear path to the systematic design of materials for the construction of two-dimensional heterostructures with tunable optoelectronic properties.

4.
Nature ; 595(7865): 48-52, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34194017

RESUMEN

One of the first theoretically predicted manifestations of strong interactions in many-electron systems was the Wigner crystal1-3, in which electrons crystallize into a regular lattice. The crystal can melt via either thermal or quantum fluctuations4. Quantum melting of the Wigner crystal is predicted to produce exotic intermediate phases5,6 and quantum magnetism7,8 because of the intricate interplay of Coulomb interactions and kinetic energy. However, studying two-dimensional Wigner crystals in the quantum regime has often required a strong magnetic field9-11 or a moiré superlattice potential12-15, thus limiting access to the full phase diagram of the interacting electron liquid. Here we report the observation of bilayer Wigner crystals without magnetic fields or moiré potentials in an atomically thin transition metal dichalcogenide heterostructure, which consists of two MoSe2 monolayers separated by hexagonal boron nitride. We observe optical signatures of robust correlated insulating states at symmetric (1:1) and asymmetric (3:1, 4:1 and 7:1) electron doping of the two MoSe2 layers at cryogenic temperatures. We attribute these features to bilayer Wigner crystals composed of two interlocked commensurate triangular electron lattices, stabilized by inter-layer interaction16. The Wigner crystal phases are remarkably stable, and undergo quantum and thermal melting transitions at electron densities of up to 6 × 1012 per square centimetre and at temperatures of up to about 40 kelvin. Our results demonstrate that an atomically thin heterostructure is a highly tunable platform for realizing many-body electronic states and probing their liquid-solid and magnetic quantum phase transitions4-8,17.

5.
Nature ; 583(7815): 221-225, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32641816

RESUMEN

Reducing the energy bandwidth of electrons in a lattice below the long-range Coulomb interaction energy promotes correlation effects. Moiré superlattices-which are created by stacking van der Waals heterostructures with a controlled twist angle1-3-enable the engineering of electron band structure. Exotic quantum phases can emerge in an engineered moiré flat band. The recent discovery of correlated insulator states, superconductivity and the quantum anomalous Hall effect in the flat band of magic-angle twisted bilayer graphene4-8 has sparked the exploration of correlated electron states in other moiré systems9-11. The electronic properties of van der Waals moiré superlattices can further be tuned by adjusting the interlayer coupling6 or the band structure of constituent layers9. Here, using van der Waals heterostructures of twisted double bilayer graphene (TDBG), we demonstrate a flat electron band that is tunable by perpendicular electric fields in a range of twist angles. Similarly to magic-angle twisted bilayer graphene, TDBG shows energy gaps at the half- and quarter-filled flat bands, indicating the emergence of correlated insulator states. We find that the gaps of these insulator states increase with in-plane magnetic field, suggesting a ferromagnetic order. On doping the half-filled insulator, a sudden drop in resistivity is observed with decreasing temperature. This critical behaviour is confined to a small area in the density-electric-field plane, and is attributed to a phase transition from a normal metal to a spin-polarized correlated state. The discovery of spin-polarized correlated states in electric-field-tunable TDBG provides a new route to engineering interaction-driven quantum phases.

6.
Nature ; 586(7827): 42-46, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32999482

RESUMEN

Sensitive microwave detectors are essential in radioastronomy1, dark-matter axion searches2 and superconducting quantum information science3,4. The conventional strategy to obtain higher-sensitivity bolometry is the nanofabrication of ever smaller devices to augment the thermal response5-7. However, it is difficult to obtain efficient photon coupling and to maintain the material properties in a device with a large surface-to-volume ratio owing to surface contamination. Here we present an ultimately thin bolometric sensor based on monolayer graphene. To utilize the minute electronic specific heat and thermal conductivity of graphene, we develop a superconductor-graphene-superconductor Josephson junction8-13 bolometer embedded in a microwave resonator with a resonance frequency of 7.9 gigahertz and over 99 per cent coupling efficiency. The dependence of the Josephson switching current on the operating temperature, charge density, input power and frequency shows a noise-equivalent power of 7 × 10-19 watts per square-root hertz, which corresponds to an energy resolution of a single 32-gigahertz photon14, reaching the fundamental limit imposed by intrinsic thermal fluctuations at 0.19 kelvin. Our results establish that two-dimensional materials could enable the development of bolometers with the highest sensitivity allowed by the laws of thermodynamics.

7.
Nature ; 583(7817): 537-541, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32699401

RESUMEN

The electron-hole plasma in charge-neutral graphene is predicted to realize a quantum critical system in which electrical transport features a universal hydrodynamic description, even at room temperature1,2. This quantum critical 'Dirac fluid' is expected to have a shear viscosity close to a minimum bound3,4, with an interparticle scattering rate saturating1 at the Planckian time, the shortest possible timescale for particles to relax. Although electrical transport measurements at finite carrier density are consistent with hydrodynamic electron flow in graphene5-8, a clear demonstration of viscous flow at the charge-neutrality point remains elusive. Here we directly image viscous Dirac fluid flow in graphene at room temperature by measuring the associated stray magnetic field. Nanoscale magnetic imaging is performed using quantum spin magnetometers realized with nitrogen vacancy centres in diamond. Scanning single-spin and wide-field magnetometry reveal a parabolic Poiseuille profile for electron flow in a high-mobility graphene channel near the charge-neutrality point, establishing the viscous transport of the Dirac fluid. This measurement is in contrast to the conventional uniform flow profile imaged in a metallic conductor and also in a low-mobility graphene channel. Via combined imaging and transport measurements, we obtain viscosity and scattering rates, and observe that these quantities are comparable to the universal values expected at quantum criticality. This finding establishes a nearly ideal electron fluid in charge-neutral, high-mobility graphene at room temperature4. Our results will enable the study of hydrodynamic transport in quantum critical fluids relevant to strongly correlated electrons in high-temperature superconductors9. This work also highlights the capability of quantum spin magnetometers to probe correlated electronic phenomena at the nanoscale.

8.
Anal Chem ; 96(23): 9729-9736, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38801277

RESUMEN

Detecting nucleic acids at ultralow concentrations is critical for research and clinical applications. Particle-based assays are commonly used to detect nucleic acids. However, DNA hybridization on particle surfaces is inefficient due to the instability of tethered sequences, which negatively influences the assay's detection sensitivity. Here, we report a method to stabilize sequences on particle surfaces using a double-stranded linker at the 5' end of the tethered sequence. We termed this method Rigid Double Stranded Genomic Linkers for Improved DNA Analysis (RIGID-DNA). Our method led to a 3- and 100-fold improvement of the assays' clinical and analytical sensitivity, respectively. Our approach can enhance the hybridization efficiency of particle-based assays without altering existing assay workflows. This approach can be adapted to other platforms and surfaces to enhance the detection sensitivity.


Asunto(s)
ADN , Límite de Detección , Hibridación de Ácido Nucleico , ADN/química , Humanos , Conformación de Ácido Nucleico
9.
Bioinformatics ; 39(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36651657

RESUMEN

MOTIVATION: Protein and peptide engineering has become an essential field in biomedicine with therapeutics, diagnostics and synthetic biology applications. Helices are both abundant structural feature in proteins and comprise a major portion of bioactive peptides. Precise design of helices for binding or biological activity is still a challenging problem. RESULTS: Here, we present HelixGAN, the first generative adversarial network method to generate de novo left-handed and right-handed alpha-helix structures from scratch at an atomic level. We developed a gradient-based search approach in latent space to optimize the generation of novel α-helical structures by matching the exact conformations of selected hotspot residues. The designed α-helical structures can bind specific targets or activate cellular receptors. There is a significant agreement between the helix structures generated with HelixGAN and PEP-FOLD, a well-known de novo approach for predicting peptide structures from amino acid sequences. HelixGAN outperformed RosettaDesign, and our previously developed structural similarity method to generate D-peptides matching a set of given hotspots in a known L-peptide. As proof of concept, we designed a novel D-GLP1_1 analog that matches the conformations of critical hotspots for the GLP1 function. MD simulations revealed a stable binding mode of the D-GLP1_1 analog coupled to the GLP1 receptor. This novel D-peptide analog is more stable than our previous D-GLP1 design along the MD simulations. We envision HelixGAN as a critical tool for designing novel bioactive peptides with specific properties in the early stages of drug discovery. AVAILABILITY AND IMPLEMENTATION: https://github.com/xxiexuezhi/helix_gan. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Aprendizaje Profundo , Conformación Proteica en Hélice alfa , Péptidos/química , Estructura Secundaria de Proteína , Proteínas
10.
Nat Mater ; 22(8): 992-998, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37365226

RESUMEN

Conventional antiferroelectric materials with atomic-scale anti-aligned dipoles undergo a transition to a ferroelectric (FE) phase under strong electric fields. The moiré superlattice formed in the twisted stacks of van der Waals crystals exhibits polar domains alternating in moiré length with anti-aligned dipoles. In this moiré domain antiferroelectic (MDAF) arrangement, the distribution of electric dipoles is distinguished from that of two-dimensional FEs, suggesting dissimilar domain dynamics. Here we performed an operando transmission electron microscopy investigation on twisted bilayer WSe2 to observe the polar domain dynamics in real time. We find that the topological protection, provided by the domain wall network, prevents the MDAF-to-FE transition. As one decreases the twist angle, however, this transition occurs as the domain wall network disappears. Exploiting stroboscopic operando transmission electron microscopy on the FE phase, we measure a maximum domain wall velocity of 300 µm s-1. Domain wall pinnings by various disorders limit the domain wall velocity and cause Barkhausen noises in the polarization hysteresis loop. Atomic-scale analysis of the pinning disorders provides structural insight on how to improve the switching speed of van der Waals FEs.

11.
Phys Rev Lett ; 132(24): 246502, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38949367

RESUMEN

Disorder at etched edges of graphene quantum dots (GQD) enables random all-to-all interactions between localized charges in partially filled Landau levels, providing a potential platform to realize the Sachdev-Ye-Kitaev (SYK) model. We use quantum Hall edge states in the graphene electrodes to measure electrical conductance and thermoelectric power across the GQD. In specific temperature ranges, we observe a suppression of electric conductance fluctuations and slowly decreasing thermoelectric power across the GQD with increasing temperature, consistent with recent theory for the SYK regime.

12.
Phys Rev Lett ; 132(5): 056303, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38364168

RESUMEN

Employing flux-grown single crystal WSe_{2}, we report charge-carrier scattering behaviors measured in h-BN encapsulated monolayer field effect transistors. We observe a nonmonotonic change of transport mobility as a function of hole density in the degenerately doped sample, which can be explained by energy dependent scattering amplitude of strong defects calculated using the T-matrix approximation. Utilizing long mean-free path (>500 nm), we also demonstrate the high quality of our electronic devices by showing quantized conductance steps from an electrostatically defined quantum point contact, showing the potential for creating ultrahigh quality quantum optoelectronic devices based on atomically thin semiconductors.

13.
PLoS Comput Biol ; 19(4): e1011033, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37043517

RESUMEN

Protein design is a technique to engineer proteins by permuting amino acids in the sequence to obtain novel functionalities. However, exploring all possible combinations of amino acids is generally impossible due to the exponential growth of possibilities with the number of designable sites. The present work introduces circuits implementing a pure quantum approach, Grover's algorithm, to solve protein design problems. Our algorithms can adjust to implement any custom pair-wise energy tables and protein structure models. Moreover, the algorithm's oracle is designed to consist of only adder functions. Quantum computer simulators validate the practicality of our circuits, containing up to 234 qubits. However, a smaller circuit is implemented on real quantum devices. Our results show that using [Formula: see text] iterations, the circuits find the correct results among all N possibilities, providing the expected quadratic speed up of Grover's algorithm over classical methods (i.e., [Formula: see text]).


Asunto(s)
Metodologías Computacionales , Teoría Cuántica , Aminoácidos , Algoritmos , Ingeniería
14.
Nature ; 558(7710): 425-429, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29925970

RESUMEN

Molecular-scale manipulation of electronic and ionic charge accumulation in materials is the backbone of electrochemical energy storage1-4. Layered van der Waals (vdW) crystals are a diverse family of materials into which mobile ions can electrochemically intercalate into the interlamellar gaps of the host atomic lattice5,6. The structural diversity of such materials enables the interfacial properties of composites to be optimized to improve ion intercalation for energy storage and electronic devices7-12. However, the ability of heterolayers to modify intercalation reactions, and their role at the atomic level, are yet to be elucidated. Here we demonstrate the electrointercalation of lithium at the level of individual atomic interfaces of dissimilar vdW layers. Electrochemical devices based on vdW heterostructures 13 of stacked hexagonal boron nitride, graphene and molybdenum dichalcogenide (MoX2; X = S, Se) layers are constructed. We use transmission electron microscopy, in situ magnetoresistance and optical spectroscopy techniques, as well as low-temperature quantum magneto-oscillation measurements and ab initio calculations, to resolve the intermediate stages of lithium intercalation at heterointerfaces. The formation of vdW heterointerfaces between graphene and MoX2 results in a more than tenfold greater accumulation of charge in MoX2 when compared to MoX2/MoX2 homointerfaces, while enforcing a more negative intercalation potential than that of bulk MoX2 by at least 0.5 V. Beyond energy storage, our combined experimental and computational methodology for manipulating and characterizing the electrochemical behaviour of layered systems opens new pathways to control the charge density in two-dimensional electronic and optoelectronic devices.

15.
Nano Lett ; 23(7): 3054-3061, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36930591

RESUMEN

As the electron mobility of two-dimensional (2D) materials is dependent on an insulating substrate, the nonuniform surface charge and morphology of silicon dioxide (SiO2) layers degrade the electron mobility of 2D materials. Here, we demonstrate that an atomically thin single-crystal insulating layer of silicon oxynitride (SiON) can be grown epitaxially on a SiC wafer at a wafer scale and find that the electron mobility of graphene field-effect transistors on the SiON layer is 1.5 times higher than that of graphene field-effect transistors on typical SiO2 films. Microscale and nanoscale void defects caused by heterostructure growth were eliminated for the wafer-scale growth of the single-crystal SiON layer. The single-crystal SiON layer can be grown on a SiC wafer with a single thermal process. This simple fabrication process, compatible with commercial semiconductor fabrication processes, makes the layer an excellent replacement for the SiO2/Si wafer.

16.
Neuromodulation ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38752946

RESUMEN

INTRODUCTION: The International Neuromodulation Society convened a multispecialty group of physicians and scientists based on expertise with international representation to establish evidence-based guidance on intrathecal drug delivery in treating chronic pain. This Polyanalgesic Consensus Conference (PACC)® project, created more than two decades ago, intends to provide evidence-based guidance for important safety and efficacy issues surrounding intrathecal drug delivery and its impact on the practice of neuromodulation. MATERIALS AND METHODS: Authors were chosen on the basis of their clinical expertise, familiarity with the peer-reviewed literature, research productivity, and contributions to the neuromodulation literature. Section leaders supervised literature searches of MEDLINE, BioMed Central, Current Contents Connect, Embase, International Pharmaceutical Abstracts, Web of Science, Google Scholar, and PubMed from 2017 (when PACC® last published guidelines) to the present. Identified studies were graded using the United States Preventive Services Task Force criteria for evidence and certainty of net benefit. Recommendations are based on the strength of evidence or consensus when evidence is scant. RESULTS: The PACC® examined the published literature and established evidence- and consensus-based recommendations to guide best practices. Additional guidance will occur as new evidence is developed in future iterations of this process. CONCLUSIONS: The PACC® recommends best practices regarding intrathecal drug delivery to improve safety and efficacy. The evidence- and consensus-based recommendations should be used as a guide to assist decision-making when clinically appropriate.

17.
J Neuroophthalmol ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38051953

RESUMEN

BACKGROUND: Evaluating patients with potentially sight-threatening conditions frequently involves urgent neuroimaging, and some providers recommend expediting emergency department (ED) evaluation. However, several factors may limit the practicality of ED evaluation. This pilot study assessed the feasibility and safety of a STAT magnetic resonance imaging (MRI) protocol, designed to facilitate outpatient MRI within 48 hours of referral, compared with ED evaluation for patients with optic disc edema. METHODS: A retrospective chart review was performed. Demographics, clinical data, and baseline ophthalmic measures were compared between patients in STAT and ED groups using the t test or Fisher exact test. Multivariate analyses compared changes in visual acuity (VA), visual field mean deviation (VF MD), retinal nerve fiber layer thickness, and edema grade between presentation and follow-up using a mixed-effects model adjusting for age, sex, and baseline measures. RESULTS: A total of 70 patients met the study criteria-24 (34.3%) in the STAT MRI cohort and 46 (65.7%) in the ED cohort. Demographic variables were similar between groups. Patients referred to the ED had worse VA ( P < 0.001), larger VF MD ( P < 0.001), and higher edema grade ( P = 0.002) at presentation. Four patients in the ED group and none in the STAT group were found to have space-occupying lesions. Multivariate analyses showed that follow-up measures were significantly associated with their baseline values (all P < 0.001) but not with referral protocol (all P > 0.099). The STAT MRI protocol was associated with lower average patient charges and hospital costs. CONCLUSIONS: The STAT MRI protocol did not result in inferior visual outcomes or delay in life-threatening diagnoses. Urgent outpatient evaluation, rather than ED referral, seems safe for some patients with optic disc edema. These findings support continued utilization of the protocol and ongoing improvement efforts.

18.
Nano Lett ; 22(23): 9700-9706, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36441915

RESUMEN

Single layers of two-dimensional (2D) materials hold the promise for further miniaturization of semiconductor electronic devices. However, the metal-semiconductor contact resistance limits device performance. To mitigate this problem, we propose modulation doping, specifically a doping layer placed on the opposite side of a metal-semiconductor interface. Using first-principles calculations to obtain the band alignment, we show that the Schottky barrier height and, consequently, the contact resistance at the metal-semiconductor interface can be reduced by modulation doping. We demonstrate the feasibility of this approach for a single-layer tungsten diselenide (WSe2) channel and 2D MXene modulation doping layers, interfaced with several different metal contacts. Our results indicate that the Fermi level of the metal can be shifted across the entire band gap. This approach can be straight-forwardly generalized for other 2D semiconductors and a wide variety of doping layers.

19.
Nano Lett ; 22(4): 1726-1733, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35133170

RESUMEN

A rechargeable aluminum-ion battery based on chloroaluminate electrolytes has received intense attention due to the high abundance and chemical stability of aluminum. However, the fundamental intercalation processes and dynamics in these battery systems remain unresolved. Here, the energetics and dynamics of chloroaluminate ion intercalation in atomically thin single crystal graphite are investigated by fabricating mesoscopic devices for charge transport and operando optical microscopy. These mesoscopic measurements are compared to the high-performance rechargeable Al-based battery consisting of a few-layer graphene-multiwall carbon nanotube composite cathode. These composites exhibit a 60% capacity enhancement over pyrolytic graphite, while an ∼3-fold improvement in overall ion diffusivity is also obtained exhibiting ∼1% of those in atomically thin single crystals. Our results thus establish the distinction between intrinsic and ensemble electrochemical behavior in Al-based batteries and show that engineering ion transport in these devices can yet lead to vast improvements in battery performance.

20.
Nat Mater ; 20(4): 480-487, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33398121

RESUMEN

Moiré superlattices in twisted van der Waals materials have recently emerged as a promising platform for engineering electronic and optical properties. A major obstacle to fully understanding these systems and harnessing their potential is the limited ability to correlate direct imaging of the moiré structure with optical and electronic properties. Here we develop a secondary electron microscope technique to directly image stacking domains in fully functional van der Waals heterostructure devices. After demonstrating the imaging of AB/BA and ABA/ABC domains in multilayer graphene, we employ this technique to investigate reconstructed moiré patterns in twisted WSe2/WSe2 bilayers and directly correlate the increasing moiré periodicity with the emergence of two distinct exciton species in photoluminescence measurements. These states can be tuned individually through electrostatic gating and feature different valley coherence properties. We attribute our observations to the formation of an array of two intralayer exciton species that reside in alternating locations in the superlattice, and open up new avenues to realize tunable exciton arrays in twisted van der Waals heterostructures, with applications in quantum optoelectronics and explorations of novel many-body systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA