Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Small ; : e2311736, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38552227

RESUMEN

Nanomaterial-based yarns have been actively developed owing to their advantageous features, namely, high surface-area-to-volume ratios, flexibility, and unusual material characteristics such as anisotropy in electrical/thermal conductivity. The superior properties of the nanomaterials can be directly imparted and scaled-up to macro-sized structures. However, most nanomaterial-based yarns have thus far, been fabricated with only organic materials such as polymers, graphene, and carbon nanotubes. This paper presents a novel fabrication method for fully inorganic nanoribbon yarn, expanding its applicability by bundling highly aligned and suspended nanoribbons made from various inorganic materials (e.g., Au, Pd, Ni, Al, Pt, WO3, SnO2, NiO, In2O3, and CuO). The process involves depositing the target inorganic material on a nanoline mold, followed by suspension through plasma etching of the nanoline mold, and twisting using a custom-built yarning machine. Nanoribbon yarn structures of various functional inorganic materials are utilized for chemical sensors (Pd-based H2 and metal oxides (MOx)-based green gas sensors) and green energy transducers (water splitting electrodes/triboelectric nanogenerators). This method is expected to provide a comprehensive fabrication strategy for versatile inorganic nanomaterials-based yarns.

2.
Nanotechnology ; 32(31)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33892481

RESUMEN

Designing uniform plasmonic surfaces in a large area is highly recommended for surface-enhanced Raman scattering (SERS). As periodic morphologies exhibit uniform SERS and optical tunability, diverse fabrication methods of periodic nanostructures have been reported for SERS applications. Laser interference lithography (LIL) is one of the most versatile tools since it can rapidly fabricate periodic patterns without the usage of photomasks. Here, we explore complex interference patterns for spatially uniform SERS sensors and its cost-effective fabrication method termed multi-exposure laser interference lithography (MELIL). MELIL can produce nearly periodic profiles along every direction confirmed by mathematical background, and in virtue of periodicity, we show that highly uniform Raman scattering (relative standard deviation <6%) can also be achievable in complex geometries as the conventional hole patterns. We quantitatively characterize the Raman enhancement of the MELIL complex patterns after two different metal deposition processes, Au e-beam evaporation and Ag electroplating, which results in 0.387 × 105and 1.451 × 105in enhancement factor respectively. This alternative, vacuum-free electroplating method realizes an even more cost-effective process with enhanced performance. We further conduct the optical simulation for MELIL complex patterns which exhibits the broadened and shifted absorption peaks. This result supports the potential of the expanded optical tunability of the suggested process.

3.
Am J Primatol ; 83(10): e23319, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34402078

RESUMEN

Tropical rainforests are characterized by a high diversity of plant species. Each plant species presents with differential phenological patterns in fruit production. In some species, all individual trees produce fruit simultaneously within clustered periods; whereas in others, each individual tree fruits at irregular time intervals. By observing this pattern, some primate species use the presence of fruits in one tree as a cue to find fruit in other trees of the same synchronously fruiting tree species. Here, we investigated whether the highly frugivorous Javan gibbons (Hylobates moloch) in Gunung Halimun-Salak National Park in Indonesia have knowledge of synchronous characteristics of fruiting trees and whether they can further distinguish fruit species with different synchrony levels, that is, tree species with highly synchronous fruiting patterns versus tree species with less synchronous fruiting patterns. Across 12 months we collected biweekly phenological data on 250 trees from 10 fruit species and observed Javan gibbons' visits to those species. We found that a fruit discovery in the beginning of fruiting seasons triggered gibbons to visit trees of the same fruit species. However, gibbons' visit rates did not differ between highly synchronous and asynchronous species. Our results suggest that Javan gibbons have knowledge of synchronous characteristics of fruiting trees in general, but they do not differentiate highly synchronous versus asynchronous fruit species. We speculate that Javan gibbons, who live in relatively small ranges with very low tree density of preferred fruit species, are likely able to track and remember fruiting states of individual trees without needing to distinguish fruit species with different synchrony levels. Moreover, gibbons may make little benefit of distinguishing highly synchronous versus asynchronous fruit species, probably due to gibbons' heavy use of asynchronous figs. Our study provides an insight into how gibbon's foraging strategies may have been shaped in response to their ecological environment.


Asunto(s)
Frutas , Hylobates , Animales , Conducta Alimentaria , Indonesia , Árboles
4.
Sensors (Basel) ; 21(14)2021 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-34300613

RESUMEN

Spinocerebellar ataxia (SCA) is a hereditary neurodegenerative disorder that presents as ataxia. Due to the decline in balance, patients with SCA often experience restricted mobility and a decreased quality of life. Thus, many studies have emphasized the importance of physiotherapies, including gait training, in SCA patients. However, few studies have examined the effectiveness of robotic gait training in SCA. Here, we report the therapeutic outcomes of exoskeleton-assisted gait training in a patient with SCA. A 23-year-old woman with SCA participated in a gait training program using a powered lower-limb robotic exoskeleton, ANGELLEGS. The 8-week training program consisted of standing training, weight-shifting exercises, and gait training. Several measures of general function, balance, gait, and cardiopulmonary function were applied before, after, and 4 weeks after the program. After the program, overall improvements were found on scales measuring balance and gait function, and these improvements remained at 4 weeks after the program. Cardiopulmonary function was also improved 4 weeks after the program. Robotic exoskeleton gait training can be a beneficial option for training balance, gait, and cardiopulmonary function in SCA.


Asunto(s)
Dispositivo Exoesqueleto , Ataxias Espinocerebelosas , Adulto , Terapia por Ejercicio , Femenino , Marcha , Humanos , Calidad de Vida , Adulto Joven
5.
Langmuir ; 36(24): 6635-6650, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32418428

RESUMEN

Self-propelled jumping of condensate droplets (dew) enables their easy and efficient removal from surfaces and is essential for enhancing the condensation heat transfer coefficient and for delaying the frost growth rate on supercooled surfaces. Here, we report the droplet-jumping phenomenon using nanoporous vertically aligned carbon nanotube (VA-CNT) microstructures grown on smooth silicon substrates and coated with poly-(1H, 1H, 2H, 2H-perfluorodecylacrylate) (pPFDA). We also report droplet-sweeping phenomenon on horizontally mounted surfaces, concluding that the frost surface coverage area and the frost growth rates observed with the droplet-sweeping phenomenon are much lower than those that are observed with the droplet-jumping phenomenon alone. We also investigate the fundamentals of droplet-jumping and the frost growth phenomena using line-shaped, hollow-cylindrical, and cylindrical microstructures, comparing the frost surface coverage area and the ice-bridging times during condensation-frosting, prolonged condensation-frosting, and direct-frosting. We find that the closely spaced thin line-shaped microstructures and hollow-cylindrical microstructures are optimal for frost coverage reduction because of their ability to exhibit droplet-jumping and droplet-sweeping phenomena. We observe that adding nonuniform roughness on top of the microstructures leads to jumping-associated droplet-sweeping on supercooled surfaces. Here, we report the evaporation of an already frozen droplet because of freezing of a supercooled condensate droplet in its close vicinity, enabling the Cassie-Baxter state frost growth and enhancing defrosting efficiency. Finally, we discuss the dynamic defrosting behavior of the pPFDA-coated VA-CNT microstructures, concluding that the small gaps (spacings) between the microstructures not only enable dewetting transitions of droplets but also promote the Cassie-Baxter state frost formation.

6.
Sensors (Basel) ; 20(18)2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906807

RESUMEN

The analysis of circulating tumor cells (CTCs) in the peripheral blood of cancer patients is critical in clinical research for further investigation of tumor progression and metastasis. In this study, we present a novel surface-enhanced Raman scattering (SERS) substrate for the efficient capture and characterization of cancer cells using silver nanoparticles-reduced graphene oxide (AgNPs-rGO) composites. A pulsed laser reduction of silver nanowire-graphene oxide (AgNW-GO) mixture films induces hot-spot formations among AgNPs and artificial biointerfaces consisting of rGOs. We also use in situ electric field-assisted fabrication methods to enhance the roughness of the SERS substrate. The AgNW-GO mixture films, well suited for the proposed process due to its inherent electrophoretic motion, is adjusted between indium tin oxide (ITO) transparent electrodes and the nano-undulated surface is generated by applying direct-current (DC) electric fields during the laser process. As a result, MCF7 breast cancer cells are efficiently captured on the AgNPs-rGO substrates, about four times higher than the AgNWs-GO films, and the captured living cells are successfully analyzed by SERS spectroscopy. Our newly designed bifunctional substrate can be applied as an effective system for the capture and characterization of CTCs.


Asunto(s)
Nanopartículas del Metal , Células Neoplásicas Circulantes , Espectrometría Raman , Técnicas Biosensibles , Grafito , Humanos , Plata
7.
Langmuir ; 35(24): 7659-7671, 2019 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-31013102

RESUMEN

Printing of ultrathin layers of polymeric and colloidal inks is critical for the manufacturing of electronics on nonconventional substrates such as paper and polymer films. Recently, we found that nanoporous stamps overcome key limitations of traditional polymer stamps in flexographic printing, namely, enabling the printing of ultrathin nanoparticle films with micron-scale lateral precision. Here, we study the dynamics of liquid transfer between nanoporous stamps and solid substrates. The stamps comprise forests of polymer-coated carbon nanotubes, and the surface mechanics and wettability of the stamps are engineered to imbibe colloidal inks and transfer the ink upon contact with the target substrate. By high-speed imaging during printing, we observe the dynamics of liquid spreading, which is mediated by progressing contact between the nanostructured stamp surface and by the substrate and imbibition within the stamp-substrate gap. From the final contact area, the volume of ink transfer is mediated by rupture of a capillary bridge; and, after rupture, liquid spreads to fill the area defined by a precursor film matching the stamp geometry with high precision. Via modeling of the liquid dynamics, and comparison with data, we elucidate the scale- and rate-limiting aspects of the process. Specifically, we find that the printed ink volume and resulting layer thickness are independent of contact pressure; and that printed layer thickness decreases with retraction speed. Under these conditions, nanoparticle films with controlled thickness in the <100 nm regime can be printed using nanoporous stamp flexography, at speeds commensurate with industrial printing equipment.

8.
Small ; 12(32): 4393-403, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27378165

RESUMEN

High-throughput fabrication of microstructured surfaces with multi-directional, re-entrant, or otherwise curved features is becoming increasingly important for applications such as phase change heat transfer, adhesive gripping, and control of electromagnetic waves. Toward this goal, curved microstructures of aligned carbon nanotubes (CNTs) can be fabricated by engineered variation of the CNT growth rate within each microstructure, for example by patterning of the CNT growth catalyst partially upon a layer which retards the CNT growth rate. This study develops a finite-element simulation framework for predictive synthesis of complex CNT microarchitectures by this strain-engineered growth process. The simulation is informed by parametric measurements of the CNT growth kinetics, and the anisotropic mechanical properties of the CNTs, and predicts the shape of CNT microstructures with impressive fidelity. Moreover, the simulation calculates the internal stress distribution that results from extreme deformation of the CNT structures during growth, and shows that delamination of the interface between the differentially growing segments occurs at a critical shear stress. Guided by these insights, experiments are performed to study the time- and geometry-depended stress development, and it is demonstrated that corrugating the interface between the segments of each microstructure mitigates the interface failure. This study presents a methodology for 3D microstructure design based on "pixels" that prescribe directionality to the resulting microstructure, and show that this framework enables the predictive synthesis of more complex architectures including twisted and truss-like forms.

9.
Artículo en Inglés | MEDLINE | ID: mdl-39190606

RESUMEN

Stacking semiconductor chips allows for increased packing density within a given footprint and efficient communication between different functional layers of the chip, leading to higher performance, improved speed, and reduced power consumption. In such vertical stacking, achieving homogeneous electrical and mechanical bonding between heterogeneous chips is crucial, which is termed Cu to Cu direct bonding (CCDB) technology. However, conventional CCDB required a high temperature of over 250 °C to allow Cu diffusion and a vacuum condition for inhibiting Cu oxidation, limiting its practical utilization. Here, we propose that the covering of the Ru layer enables a reliable CCDB as low as 200 °C without concerns regarding oxidation. The bonding strength was as high as 2.24 MPa, and it was endurable at the -45 and 125 °C temperature cycle test for 500 cycles. Through microscopic analysis, we have identified that Cu diffuses through the intercluster boundaries of the Ru layer and moves to the surface, and these atomic Cu ions are recrystallized at the bonding interface, enabling stable bonding at lower temperatures. Specifically, we observed a trade-off between Cu diffusion distance and oxidation inhibition capability depending on the thickness of Ru and found that a 6 nm-thick Ru is optimal, balancing these factors.

10.
ACS Appl Mater Interfaces ; 16(33): 44261-44269, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39134960

RESUMEN

As the potential adverse health and environmental effects of nanoscale pollutants have garnered significant attention, the demand for monitoring and capturing ultrafine particulate matter has been growing. With the rise in ultrafine dust emissions, this issue has become increasingly important. However, submicron particles require advanced strategies to be captured because of their limited inertial effect. For example, electrostatic air filters have been investigated for their improved performance in the fine particle regime. On the other hand, Raman spectroscopy was proposed as a promising analytical strategy for aerosol particles because it can be used to conveniently detect analytes in a label-free manner. Thus, the synergistic integration of these strategies can open new applications for addressing environment-related challenges. This study presents a multifunctional approach for achieving both air filtration and surface-enhanced Raman scattering (SERS) for analyte identification. We propose a nanoporous membrane composed of a thin gold layer, copper, and copper oxide to provide the desired functions. The structures are produced by performing scalable electrodeposition and subsequent electron-beam evaporation, attaining an excellent filtration efficiency of 95.9% with an applied voltage of 5 kV for 300 nm KCl particles and a pressure drop of 121 Pa. Raman intensity measurements confirm that the nanodendritic surface of the membrane intensifies the Raman signals and allows for the detection of 10 µL of nanoplastic particle dispersion with a concentration of 50 µg/mL. Rhodamine 6G aerosol stream with an approximate particle deposition rate of 0.040 × 106 mm-2·min-1 is also identified in a minimum detectable time of 50 s. The membrane is shown to be recyclable owing to its structural robustness in organic solvents. In addition, the fatigue resistance of the structure is evaluated through 22,000 iterative loading cycles at a pressure of 177 kPa. No performance degradation is observed after the fatigue loading.

11.
Adv Mater ; 36(7): e2309518, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38014492

RESUMEN

Natural sharkskin features staggered-overlapped and multilayered architectures of riblet-textured anisotropic microdenticles, exhibiting drag reduction and providing a flexible yet strong armor. However, the artificial fabrication of three-dimensional (3D) sharkskin with these unique functionalities and mechanical integrity is a challenge using conventional techniques. In this study, it is reported on the facile microfabrication of multilayered 3D sharkskin through the magnetic actuation of polymeric composites and subsequent chemical shape fixation by casting thin polymeric films. The fabricated hydrophobic sharkskin, with geometric symmetry breaking, achieves anisotropic drag reduction in frontal and backward flow directions against the riblet-textured microdenticles. For mechanical integrity, hard-on-soft multilayered mechanical properties are realized by coating the polymeric sharkskin with thin layers of zinc oxide and platinum, which have higher hardness and recovery behaviors than the polymer. This multilayered hard-on-soft sharkskin exhibits friction anisotropy, mechanical robustness, and structural recovery. Furthermore, coating the MXene nanosheets provides the fabricated sharkskin with a low electrical resistance of ≈5.3 Ω, which leads to high Joule heating (≈229.9 °C at 2.75 V). The proposed magnetomechanical actuation-assisted microfabrication strategy is expected to facilitate the development of devices requiring multifunctional microtextures.

12.
Adv Mater ; : e2407116, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148184

RESUMEN

Pressure-sensitive adhesives are widely utilized due to their instant and reversible adhesion to various dry substrates. Though offering intuitive and robust attachment of medical devices on skin, currently available clinical pressure-sensitive adhesives do not attach to internal organs, mainly due to the presence of interfacial water on the tissue surface that acts as a barrier to adhesion. In this work, a pressure-sensitive, repositionable bioadhesive (PSB) that adheres to internal organs by synergistically combining the characteristic viscoelastic properties of pressure-sensitive adhesives and the interfacial behavior of hydrogel bioadhesives, is introduced. Composed of a viscoelastic copolymer, the PSB absorbs interfacial water to enable instant adhesion on wet internal organs, such as the heart and lungs, and removal after use without causing any tissue damage. The PSB's capabilities in diverse on-demand surgical and analytical scenarios including tissue stabilization of soft organs and the integration of bioelectronic devices in rat and porcine models, are demonstrated.

13.
Biochip J ; : 1-11, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37363267

RESUMEN

A novel integrated detection system that introduces a paper-chip-based molecular detection strategy into a polydimethylsiloxane (PDMS) microchip and temperature control system was developed for on-site colorimetric detection of DNA. For the paper chip-based detection strategy, a padlock probe DNA (PLP)-mediated rolling circle amplification (RCA) reaction for signal amplification and a radial flow assay according to the Au-probe labeling strategy for visualization were optimized and applied for DNA detection. In the PDMS chip, the reactions for ligation of target-dependent PLP, RCA, and labeling were performed one-step under isothermal temperature in a single chamber, and one drop of the final reaction solution was loaded onto the paper chip to form a radial colorimetric signal. To create an optimal analysis environment, not only the optimization of molecular reactions for DNA detection but also the chamber shape of the PDMS chip and temperature control system were successfully verified. Our results indicate that a detection limit of 14.7 nM of DNA was achieved, and non-specific DNAs with a single-base mismatch at the target DNA were selectively discriminated. This integrated detection system can be applied not only for single nucleotide polymorphism identification, but also for pathogen gene detection. The adoption of inexpensive paper and PDMS chips allows the fabrication of cost-effective detection systems. Moreover, it is very suitable for operation in various resource-limited locations by adopting a highly portable and user-friendly detection method that minimizes the use of large and expensive equipment. Supplementary Information: The online version contains supplementary material available at 10.1007/s13206-023-00101-7.

14.
Turk J Phys Med Rehabil ; 69(1): 111-115, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37201017

RESUMEN

Orthostatic tremor (OT) is an uncommon progressive movement disorder that involves a leg tremor when standing or weight bearing. Additionally, OT can accompany other medical or neurodegenerative disorders. In this article, we report an unusual case of OT after trauma in an 18-year-old male patient whose symptoms of OT have been resolved after a multimodal therapeutic approach, including botulinum toxin injection. Surface electromyography, including a tremor recording, was used for the diagnosis of OT. The patient completely recovered after the rehabilitation. A comprehensive rehabilitative treatment is required in the management of OT as the patient's quality of life is greatly affected.

15.
ACS Appl Mater Interfaces ; 15(32): 38665-38673, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37549356

RESUMEN

Tactile sensors, or sensors that collect measurements through touch, have versatile applications in a wide range of fields including robotic gripping, intelligent manufacturing, and biomedical technology. Hoping to match the ability of human hands to sense physical changes in objects through touch, engineers have experimented with a variety of materials from soft polymers to hard ceramics, but so far, all have fallen short. A grand challenge for developers of "human-like" bionic tactile sensors is to be able to sense a wide range of strains while maintaining the low profile necessary for compact integration. Here, we developed a low-profile tactile sensor (∼300 µm in height) based on patterned, vertically aligned carbon nanotubes (PVACNT) that can repetitively sense compressive strains of up to 75%. Upon compression, reversible changes occur in the points of contact between CNTs, producing measurable changes in electrical admittance. By patterning VACNT pillars with different aspect ratios and pitch sizes, we engineered the range and resolution of strain sensing, suggesting that CNT-based tactile sensors can be integrated according to device specifications.

16.
Am J Primatol ; 74(12): 1154-67, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22972588

RESUMEN

Primates tend to prefer specific plant foods, and primate home ranges may contain only a subset of food species present in an area. Thus, primate feeding strategies should be sensitive to the phenology of specific species encountered within the home range in addition to responding to larger scale phenomena such as seasonal changes in rainfall or temperature. We studied three groups of Javan gibbons (Hylobates moloch) in the Gunung Halimun-Salak National Park, Indonesia from April 2008 to March 2009 and used general linear mixed models (GLMM) and a model selection procedure to investigate the effects of variation in fruit and flower availability on gibbon behavior. Preferred foods were defined as foods that are overselected relative to their abundance, while important food species were those that comprised >5% of feeding time. All important species were also preferred. Season and measurements of flower and fruit availability affected fruit-feeding time, daily path lengths (DPL), and dietary breadth. Models that included the availability of preferred foods as independent variables generally showed better explanatory power than models that used overall fruit or flower availability. For one group, fruit and preferred fruit abundance had the strongest effects on diets and DPL in the models selected, while another group was more responsive to changes in flower availability. Temporal variation in plant part consumption was not correlated in neighboring groups. Our results suggest that fine-scale local factors are important determinants of gibbon foraging strategies.


Asunto(s)
Ecosistema , Preferencias Alimentarias , Hylobates/fisiología , Animales , Dieta , Femenino , Ficus , Frutas , Indonesia , Masculino , Estaciones del Año
17.
Small Methods ; 6(5): e2200150, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35388984

RESUMEN

Metal microhoneycomb structures have received considerable attention as a type of interaction-efficient functional devices owing to their unique morphology and material properties. Microhoneycomb structures are mainly fabricated using the well-known breath-figure method. However, additional post-treatments are required to produce a metal structure because it is a polymer-based process, and this necessitates expensive, complex, and multi-step fabrication processes. Therefore, a simple, low-cost metal honeycomb fabrication process is necessary. In this paper, the laser patterning of an organometallic solution to produce silver microhoneycomb (Ag microhoneycomb) structures is proposed. Various phenomena such as rapid organic evaporation, silver nanoparticle solidification, and material reorganization from Marangoni flow are found to enable patterning-induced microhoneycomb formation. Parametric studies demonstrate that the pore size can be easily controlled through simple laser parameter changes. In addition, cyclic voltammetry and electrochemical impedance spectroscopy studies confirm the potential electrochemical applications of the Ag microhoneycomb structures based on the variation of electrochemical redox behavior depending on the pore size. Owing to the excellent advantages of one-step laser patterning without any templates, the proposed process will likely promote the practical use of the metal microhoneycomb structures.

18.
Am J Primatol ; 73(3): 270-80, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20938967

RESUMEN

Altitude influences forest structure and food abundance and distribution, which in turn affect primate feeding and ranging patterns. Javan gibbons (Hylobates moloch) are endemic to forests spanning a broad range of altitudes on Java, Indonesia. Most information about Javan gibbon behavior comes from studies in lowland forests, while the vast majority of wild gibbons remaining inhabit hill and lower montane forests. We studied the diets, activity patterns, and ranging behavior of three gibbon groups in hill/lower montane (950-1,100 m asl) forest in the Gunung Halimun-Salak National Park (GHSNP) from April 2008 to March 2009. The mean home range size was 37 ha and the mean daily path length was 1,180 m. The study groups spent 36% of time feeding, 41% resting, 15% traveling, 6% engaging in social behavior, and 2% in aggressive interactions. Fruit was the most important food (63% of feeding time) followed by leaves (24%), and flowers (12%). Our results suggest that Javan gibbons in higher elevation habitats have substantially larger home ranges than lowland populations, despite broad similarity in their activity budgets and diets. Conservation managers should consider the effects of altitude and habitat quality on gibbon ranging behavior when developing habitat corridors, selecting sites for translocation or reintroduction projects, and designating and managing protected areas.


Asunto(s)
Dieta , Conducta Alimentaria , Fenómenos de Retorno al Lugar Habitual , Hylobates , Altitud , Animales , Clima , Conservación de los Recursos Naturales , Ecosistema , Especies en Peligro de Extinción , Femenino , Abastecimiento de Alimentos , Indonesia , Masculino , Dinámica Poblacional , Conducta Social
19.
Sci Rep ; 11(1): 14018, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34234204

RESUMEN

Interstitial fluid (ISF) is a body fluid that fills, surrounds cells and contains various biomarkers, but it has been challenging to extract ISF in a reliable and sufficient amount with high speed. To address the issues, we developed the tilted microneedle ISF collecting system (TMICS) fabricated by 3D printing. In this system, the microneedle (MN) was inserted at 66° to the skin by TMICS so that the MN length could be extended within a safe range of skin penetration. Moreover, TMICS incorporating three MN patches created reliable ISF collecting conditions by penetrating the skin at consistent angle and force, 4.9 N. Due to the MN length increase and the patch number expansion, the surface area of the penetrated tissue was increased, thereby confirming that ISF extraction efficiency was improved. Skin ISF was collected into the paper reservoir on the patch, and the absorbed area was converted into a volume. ISF extraction from the rat skin in vivo by TMICS was well tolerated, and the 2.9 µL of ISF was obtained within 30 s. Therefore, TMICS is promising to apply in the diagnosis of multiple biomarkers in ISF with high speed and stability.


Asunto(s)
Líquido Extracelular/metabolismo , Agujas , Impresión Tridimensional , Piel/metabolismo , Animales , Biomarcadores , Ratas , Piel/citología
20.
Acta Biomater ; 131: 138-148, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34161871

RESUMEN

Biomaterial platforms are an integral part of stem cell biomanufacturing protocols. The collective biophysical, biochemical, and cellular cues of the stem cell niche microenvironment play an important role in regulating stem cell fate decisions. Three-dimensional (3D) culture of stem cells within biomaterials provides a route to present biophysical and biochemical stimuli through cell-matrix interactions and cell-cell interactions via secreted biomolecules. Herein, we describe a maleimide-functionalized gelatin (GelMAL) hydrogel that can be crosslinked via thiol-Michael addition click reaction for the encapsulation of sensitive stem cell populations. The maleimide functional units along the gelatin backbone enables gelation via the addition of a dithiol crosslinker without requiring external stimuli (e.g., UV light, photoinitiator), thereby reducing reactive oxide species generation. Additionally, the versatility of crosslinker selection enables easy insertion of thiol-containing bioactive or bioinert motifs. Hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) were encapsulated in GelMAL, with mechanical properties tuned to mimic the in vivo bone marrow niche. We report the insertion of a cleavable peptide crosslinker that can be degraded by the proteolytic action of Sortase A, a mammalian-inert enzyme. Notably, Sortase A exposure preserves stem cell surface markers, which are an essential metric of hematopoietic activity used in immunophenotyping. This novel GelMAL system enables a route to produce artificial stem cell niches with tunable biophysical properties, intrinsic cell-interaction motifs, and orthogonal addition of bioactive crosslinks. STATEMENT OF SIGNIFICANCE: We describe a maleimide-functionalized gelatin hydrogel that can be crosslinked via a thiol-maleimide mediated click reaction to form a stable hydrogel without the production of reactive oxygen species typical in light-based crosslinking. The mechanical properties can be tuned to match the in vivo bone marrow microenvironment for hematopoietic stem cell culture. Additionally, we report inclusion of a peptide crosslinker that can be cleaved via the proteolytic action of Sortase A and show that Sortase A exposure does not degrade sensitive surface marker expression patterns. Together, this approach reduces stem cell exposure to reactive oxygen species during hydrogel gelation and enables post-culture quantitative assessment of stem cell phenotype.


Asunto(s)
Gelatina , Hidrogeles , Animales , Células Madre Hematopoyéticas , Maleimidas , Ratones , Compuestos de Sulfhidrilo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA