Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
RNA ; 28(10): 1325-1336, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35961752

RESUMEN

Death associated protein 5 (DAP5/eIF4G2/NAT1) is a member of the eIF4G translation initiation factors that has been shown to mediate noncanonical and/or cap-independent translation. It is essential for embryonic development and for differentiation of embryonic stem cells (ESCs), specifically its ability to drive translation of specific target mRNAs. In order to expand the repertoire of DAP5 target mRNAs, we compared ribosome profiles in control and DAP5 knockdown (KD) human ESCs (hESCs) to identify mRNAs with decreased ribosomal occupancy upon DAP5 silencing. A cohort of 68 genes showed decreased translation efficiency in DAP5 KD cells. Mass spectrometry confirmed decreased protein abundance of a significant portion of these targets. Among these was KMT2D, a histone methylase previously shown to be essential for ESC differentiation and embryonic development. We found that nearly half of the cohort of DAP5 target mRNAs displaying reduced translation efficiency of their main coding sequences upon DAP5 KD contained upstream open reading frames (uORFs) that are actively translated independently of DAP5. This is consistent with previously suggested mechanisms by which DAP5 mediates leaky scanning through uORFs and/or reinitiation at the main coding sequence. Crosslinking protein-RNA immunoprecipitation experiments indicated that a significant subset of DAP5 mRNA targets bound DAP5, indicating that direct binding between DAP5 protein and its target mRNAs is a frequent but not absolute requirement for DAP5-dependent translation of the main coding sequence. Thus, we have extended DAP5's function in translation of specific mRNAs in hESCs by a mechanism allowing translation of the main coding sequence following upstream translation of short ORFs.


Asunto(s)
Factor 4G Eucariótico de Iniciación/metabolismo , Células Madre Embrionarias Humanas , Histona Metiltransferasas/genética , Histona Metiltransferasas/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Humanos , Sistemas de Lectura Abierta/genética , Biosíntesis de Proteínas , Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Genes Dev ; 30(17): 1991-2004, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27664238

RESUMEN

Multiple transcriptional and epigenetic changes drive differentiation of embryonic stem cells (ESCs). This study unveils an additional level of gene expression regulation involving noncanonical, cap-independent translation of a select group of mRNAs. This is driven by death-associated protein 5 (DAP5/eIF4G2/NAT1), a translation initiation factor mediating IRES-dependent translation. We found that the DAP5 knockdown from human ESCs (hESCs) resulted in persistence of pluripotent gene expression, delayed induction of differentiation-associated genes in different cell lineages, and defective embryoid body formation. The latter involved improper cellular organization, lack of cavitation, and enhanced mislocalized apoptosis. RNA sequencing of polysome-associated mRNAs identified candidates with reduced translation efficiency in DAP5-depleted hESCs. These were enriched in mitochondrial proteins involved in oxidative respiration, a pathway essential for differentiation, the significance of which was confirmed by the aberrant mitochondrial morphology and decreased oxidative respiratory activity in DAP5 knockdown cells. Further analysis identified the chromatin modifier HMGN3 as a cap-independent DAP5 translation target whose knockdown resulted in defective differentiation. Thus, DAP5-mediated translation of a specific set of proteins is critical for the transition from pluripotency to differentiation, highlighting the importance of cap-independent translation in stem cell fate decisions.


Asunto(s)
Diferenciación Celular/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Células Madre Embrionarias Humanas/citología , Apoptosis/genética , Cuerpos Embrioides/patología , Factor 4G Eucariótico de Iniciación/genética , Técnicas de Silenciamiento del Gen , Proteínas HMGN/genética , Proteínas HMGN/metabolismo , Humanos , Células Madre Pluripotentes/fisiología
3.
J Cell Sci ; 131(18)2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30237248

RESUMEN

Autophagy as a means of cell killing was first advanced by Clark's phenotypic description of 'Type II autophagic cell death' in 1990. However, this phenomenon later came into question, because the presence of autophagosomes in dying cells does not necessarily signify that autophagy is the cause of demise, but rather may reflect the efforts of the cell to prevent it. Resolution of this issue comes from a more careful definition of autophagy-dependent cell death (ADCD) as a regulated cell death that is shown experimentally to require different components of the autophagy machinery without involvement of alternative cell death pathways. Following these strict criteria, ADCD has been validated in both lower model organisms and mammalian cells, highlighting its importance for developmental and pathophysiological cell death. Recently, researchers have defined additional morphological criteria that characterize ADCD and begun to explore how the established, well-studied autophagy pathway is subverted from a survival to a death function. This Review explores validated models of ADCD and focuses on the current understanding of the mechanisms by which autophagy can kill a cell.


Asunto(s)
Autofagia/fisiología , Muerte Celular/fisiología , Humanos
4.
Nat Rev Mol Cell Biol ; 8(9): 741-52, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17717517

RESUMEN

The functional relationship between apoptosis ('self-killing') and autophagy ('self-eating') is complex in the sense that, under certain circumstances, autophagy constitutes a stress adaptation that avoids cell death (and suppresses apoptosis), whereas in other cellular settings, it constitutes an alternative cell-death pathway. Autophagy and apoptosis may be triggered by common upstream signals, and sometimes this results in combined autophagy and apoptosis; in other instances, the cell switches between the two responses in a mutually exclusive manner. On a molecular level, this means that the apoptotic and autophagic response machineries share common pathways that either link or polarize the cellular responses.


Asunto(s)
Apoptosis/fisiología , Autofagia/fisiología , Transducción de Señal , Animales , Ciclo Celular , Humanos
5.
Mol Cell ; 42(2): 139-41, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21504826

RESUMEN

In this issue of Molecular Cell, Lee et al. (2011) identify the peptidyl-prolyl isomerase Pin1 as a substrate of DAP kinase, simultaneously providing a critical regulatory mechanism for Pin1 inhibition and a potential mechanism that accounts for DAPK's tumor-suppressive activities.

6.
Mol Cell ; 44(5): 698-709, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22152474

RESUMEN

Autophagy and apoptosis constitute important determinants of cell fate and engage in a complex interplay in both physiological and pathological settings. The molecular basis of this crosstalk is poorly understood and relies, in part, on "dual-function" proteins that operate in both processes. Here, we identify the essential autophagy protein Atg12 as a positive mediator of mitochondrial apoptosis and show that Atg12 directly regulates the apoptotic pathway by binding and inactivating prosurvival Bcl-2 family members, including Bcl-2 and Mcl-1. The binding occurs independently of Atg5 or Atg3 and requires a unique BH3-like motif in Atg12, characterized by interaction studies and computational docking. In apoptotic cells, knockdown of Atg12 inhibited Bax activation and cytochrome c release, while ectopic expression of Atg12 antagonized the antiapoptotic activity of Mcl-1. The interaction between Atg12 and Bcl-2 family members may thus constitute an important point of convergence between autophagy and apoptosis in response to specific signals.


Asunto(s)
Apoptosis , Autofagia , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Proteína 12 Relacionada con la Autofagia , Células HEK293 , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética
7.
Mol Cell ; 40(6): 863-76, 2010 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-21172653

RESUMEN

The UNC5H dependence receptors promote apoptosis in the absence of their ligand, netrin-1, and this is important for neuronal and vascular development and for limitation of cancer progression. UNC5H2 (also called UNC5B) triggers cell death through the activation of the serine-threonine protein kinase DAPk. While performing a siRNA screen to identify genes implicated in UNC5H-induced apoptosis, we identified the structural subunit PR65ß of the holoenzyme protein phosphatase 2A (PP2A). We show that UNC5H2/B recruits a protein complex that includes PR65ß and DAPk and retains PP2A activity. PP2A activity is required for UNC5H2/B-induced apoptosis, since it activates DAPk by triggering its dephosphorylation. Moreover, netrin-1 binding to UNC5H2/B prevents this effect through interaction of the PP2A inhibitor CIP2A to UNC5H2/B. Thus we show here that, in the absence of netrin-1, recruitment of PP2A to UNC5H2/B allows the activation of DAPk via a PP2A-mediated dephosphorylation and that this mechanism is involved in angiogenesis regulation.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Proteína Fosfatasa 2/metabolismo , Receptores de Superficie Celular/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular , Humanos , Receptores de Netrina , Fosforilación , Células Tumorales Cultivadas
8.
Nucleic Acids Res ; 43(7): 3764-75, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25779044

RESUMEN

Initiation is a highly regulated rate-limiting step of mRNA translation. During cap-dependent translation, the cap-binding protein eIF4E recruits the mRNA to the ribosome. Specific elements in the 5'UTR of some mRNAs referred to as Internal Ribosome Entry Sites (IRESes) allow direct association of the mRNA with the ribosome without the requirement for eIF4E. Cap-independent initiation permits translation of a subset of cellular and viral mRNAs under conditions wherein cap-dependent translation is inhibited, such as stress, mitosis and viral infection. DAP5 is an eIF4G homolog that has been proposed to regulate both cap-dependent and cap-independent translation. Herein, we demonstrate that DAP5 associates with eIF2ß and eIF4AI to stimulate IRES-dependent translation of cellular mRNAs. In contrast, DAP5 is dispensable for cap-dependent translation. These findings provide the first mechanistic insights into the function of DAP5 as a selective regulator of cap-independent translation.


Asunto(s)
Factor 2B Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Células HEK293 , Humanos , Caperuzas de ARN
9.
Mol Cell ; 30(4): 447-59, 2008 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-18450493

RESUMEN

DAP5 is an eIF4G protein previously implicated in mediating cap-independent translation in response to cellular stresses. Here we report that DAP5 is crucial for continuous cell survival in nonstressed cells. The knockdown of endogenous DAP5 induced M phase-specific caspase-dependent apoptosis. Bcl-2 and CDK1 were identified by two independent screens as DAP5 translation targets. Notably, the activity of the Bcl-2 IRES was reduced in DAP5 knockdown cells and a selective shift of Bcl-2 mRNA toward light polysomal fractions was detected. Furthermore, a functional IRES was identified in the 5'UTR of CDK1. At the cellular level, attenuated translation of CDK1 by DAP5 knockdown decreased the phosphorylation of its M phase substrates. Ectopic expression of Bcl-2 or CDK1 proteins partially reduced the extent of caspase activation caused by DAP5 knockdown. Thus, DAP5 is necessary for maintaining cell survival during mitosis by promoting cap-independent translation of at least two prosurvival proteins.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Mitosis/fisiología , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Regiones no Traducidas 5' , Animales , Apoptosis/fisiología , Proteína Quinasa CDC2/genética , Línea Celular , Supervivencia Celular , Factor 4G Eucariótico de Iniciación/genética , Humanos , Ratones , Factores de Iniciación de Péptidos , Polirribosomas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Interferencia de ARN
10.
Trends Biochem Sci ; 35(10): 556-64, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20537543

RESUMEN

Systems biology, a combined computational and experimental approach to analyzing complex biological systems, has recently been applied to understanding the pathways that regulate programmed cell death. This approach has become especially crucial because recent advances have resulted in an expanded view of the network, to include not just a single death module (apoptosis) but multiple death programs, including programmed necrosis and autophagic cell death. Current research directions in the systems biology field range from quantitative analysis of subprocesses of individual death pathways to the study of interconnectivity among the various death modules of the larger network. These initial studies have provided great advances in our understanding of programmed cell death and have important clinical implications for drug target research.


Asunto(s)
Apoptosis , Biología de Sistemas/métodos , Animales , Humanos , Modelos Biológicos , Interferencia de ARN , Transducción de Señal
11.
Apoptosis ; 19(2): 316-28, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24220855

RESUMEN

DAP-kinase (DAPK) is a Ca(2+)/calmodulin regulated Ser/Thr kinase that activates a diverse range of cellular activities. It is subject to multiple layers of regulation involving both intramolecular signaling, and interactions with additional proteins, including other kinases and phosphatases. Its protein stability is modulated by at least three distinct ubiquitin-dependent systems. Like many kinases, DAPK participates in several signaling cascades, by phosphorylating additional kinases such as ZIP-kinase and protein kinase D (PKD), or Pin1, a phospho-directed peptidyl-prolyl isomerase that regulates the function of many phosphorylated proteins. Other substrate targets have more direct cellular effects; for example, phosphorylation of the myosin II regulatory chain and tropomyosin mediate some of DAPK's cytoskeletal functions, including membrane blebbing during cell death and cell motility. DAPK induces distinct death pathways of apoptosis, autophagy and programmed necrosis. Among the substrates implicated in these processes, phosphorylation of PKD, Beclin 1, and the NMDA receptor has been reported. Interestingly, not all cellular effects are mediated by DAPK's catalytic activity. For example, by virtue of protein-protein interactions alone, DAPK activates pyruvate kinase isoform M2, the microtubule affinity regulating kinases and inflammasome protein NLRP3, to promote glycolysis, influence microtubule dynamics, and enhance interleukin-1ß production, respectively. In addition, a number of other substrates and interacting proteins have been identified, the physiological significance of which has not yet been established. All of these substrates, effectors and regulators together comprise the DAPK interactome. By presenting the components of the interactome network, this review will clarify both the mechanisms by which DAPK function is regulated, and by which it mediates its various cellular effects.


Asunto(s)
Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Animales , Apoptosis , Muerte Celular , Activación Enzimática , Estabilidad de Enzimas , Humanos , Transducción de Señal , Especificidad por Sustrato
12.
Apoptosis ; 19(2): 286-97, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24220854

RESUMEN

DAP-kinase (DAPK) is the founding member of a family of highly related, death associated Ser/Thr kinases that belongs to the calmodulin (CaM)-regulated kinase superfamily. The family includes DRP-1 and ZIP-kinase (ZIPK), both of which share significant homology within the common N-terminal kinase domain, but differ in their extra-catalytic domains. Both DAPK and DRP-1 possess a conserved CaM autoregulatory domain, and are regulated by calcium-activated CaM and by an inhibitory auto-phosphorylation within the domain. ZIPK's activity is independent of CaM but can be activated by DAPK. The three kinases share some common functions and substrates, such as induction of autophagy and phosphorylation of myosin regulatory light chain leading to membrane blebbing. Furthermore, all can function as tumor suppressors. However, they also each possess unique functions and intracellular localizations, which may arise from the divergence in structure in their respective C-termini. In this review we will introduce the DAPK family, and present a structure/function analysis for each individual member, and for the family as a whole. Emphasis will be placed on the various domains, and how they mediate interactions with additional proteins and/or regulation of kinase function.


Asunto(s)
Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Animales , Apoptosis , Proteínas Quinasas Asociadas a Muerte Celular/química , Proteínas Quinasas Asociadas a Muerte Celular/genética , Humanos , Estructura Terciaria de Proteína , Relación Estructura-Actividad
13.
Apoptosis ; 19(2): 346-56, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24264886

RESUMEN

DAP-kinase (DAPK) is a Ca(2+)-calmodulin regulated kinase with various, diverse cellular activities, including regulation of apoptosis and caspase-independent death programs, cytoskeletal dynamics, and immune functions. Recently, DAPK has also been shown to be a critical regulator of autophagy, a catabolic process whereby the cell consumes cytoplasmic contents and organelles within specialized vesicles, called autophagosomes. Here we present the latest findings demonstrating how DAPK modulates autophagy. DAPK positively contributes to the induction stage of autophagosome nucleation by modulating the Vps34 class III phosphatidyl inositol 3-kinase complex by two independent mechanisms. The first involves a kinase cascade in which DAPK phosphorylates protein kinase D, which then phosphorylates and activates Vps34. In the second mechanism, DAPK directly phosphorylates Beclin 1, a necessary component of the Vps34 complex, thereby releasing it from its inhibitor, Bcl-2. In addition to these established pathways, we will discuss additional connections between DAPK and autophagy and potential mechanisms that still remain to be fully validated. These include myosin-dependent trafficking of Atg9-containing vesicles to the sites of autophagosome formation, membrane fusion events that contribute to expansion of the autophagosome membrane and maturation through the endocytic pathway, and trafficking to the lysosome on microtubules. Finally, we discuss how DAPK's participation in the autophagic process may be related to its function as a tumor suppressor protein, and its role in neurodegenerative diseases.


Asunto(s)
Autofagia/fisiología , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Animales , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Citoesqueleto/metabolismo , Humanos , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/patología , Fosforilación , Proteínas Supresoras de Tumor/metabolismo
14.
J Cell Sci ; 125(Pt 22): 5259-68, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23377657

RESUMEN

Cellular stress triggers a fascinating decision-making process in cells; they can either attempt to survive until the stress is resolved through the activation of cytoprotective pathways, such as autophagy, or can commit suicide by apoptosis in order to prevent further damage to surrounding healthy cells. Although autophagy and apoptosis constitute distinct cellular processes with often opposing outcomes, their signalling pathways are extensively interconnected through various mechanisms of crosstalk. The physiological relevance of the autophagy-apoptosis crosstalk is not well understood, but it is presumed to facilitate a controlled and well-balanced cellular response to a given stress signal. In this Commentary, we explore the various mechanisms by which autophagy and apoptosis regulate each other, and define general paradigms of crosstalk on the basis of mechanistic features. One paradigm relates to physical and functional interactions between pairs of specific apoptotic and autophagic proteins. In a second mechanistic paradigm, the apoptosis or autophagy processes (as opposed to individual proteins) regulate each other through induced caspase and autolysosomal activity, respectively. In a third paradigm unique to autophagy, caspases are recruited and activated on autophagosomal membranes. These mechanistic paradigms are discernible experimentally, and can therefore be used as a practical guide for the interpretation of experimental data.


Asunto(s)
Apoptosis , Autofagia , Animales , Enfermedad , Humanos , Modelos Biológicos
15.
Life Sci Alliance ; 7(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38129098

RESUMEN

Tumor cells often exploit the protein translation machinery, resulting in enhanced protein expression essential for tumor growth. Since canonical translation initiation is often suppressed because of cell stress in the tumor microenvironment, non-canonical translation initiation mechanisms become particularly important for shaping the tumor proteome. EIF4G2 is a non-canonical translation initiation factor that mediates internal ribosome entry site (IRES)- and uORF-dependent initiation mechanisms, which can be used to modulate protein expression in cancer. Here, we explored the contribution of EIF4G2 to cancer by screening the COSMIC database for EIF4G2 somatic mutations in cancer patients. Functional examination of missense mutations revealed deleterious effects on EIF4G2 protein-protein interactions and, importantly, on its ability to mediate non-canonical translation initiation. Specifically, one mutation, R178Q, led to reductions in protein expression and near-complete loss of function. Two other mutations within the MIF4G domain specifically affected EIF4G2's ability to mediate IRES-dependent translation initiation but not that of target mRNAs with uORFs. These results shed light on both the structure-function of EIF4G2 and its potential tumor suppressor effects.


Asunto(s)
Neoplasias , Biosíntesis de Proteínas , Humanos , Biosíntesis de Proteínas/genética , Mutación/genética , Neoplasias/genética , Factor 4G Eucariótico de Iniciación/genética , Microambiente Tumoral
16.
Oncogene ; 43(15): 1098-1112, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38388710

RESUMEN

The non-canonical translation initiation factor EIF4G2 plays essential roles in cellular stress responses via translation of selective mRNA cohorts. Currently there is limited and conflicting information regarding its involvement in cancer development and progression. Here we assessed its role in endometrial cancer (EC), in a cohort of 280 EC patients across different types, grades, and stages, and found that low EIF4G2 expression highly correlated with poor overall- and recurrence-free survival in Grade 2 EC patients, monitored over a period of up to 12 years. To establish a causative connection between low EIF4G2 expression and cancer progression, we stably knocked-down EIF4G2 in two human EC cell lines in parallel. EIF4G2 depletion resulted in increased resistance to conventional therapies and increased the prevalence of molecular markers for aggressive cell subsets, altering their transcriptional and proteomic landscapes. Prominent among the proteins with decreased abundance were Kinesin-1 motor proteins, KIF5B and KLC1, 2, 3. Multiplexed imaging of the EC patient tumor cohort showed a correlation between decreased expression of the kinesin proteins, and poor survival in patients with tumors of certain grades and stages. These findings reveal potential novel biomarkers for Grade 2 EC with ramifications for patient stratification and therapeutic interventions.


Asunto(s)
Neoplasias Endometriales , Cinesinas , Femenino , Humanos , Cinesinas/genética , Proteómica , Línea Celular , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo
17.
Blood ; 117(3): 960-70, 2011 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-21041719

RESUMEN

Interleukin-1ß (IL-1ß) is critical for inflammation and control of infection. The production of IL-1ß depends on expression of pro-IL-1ß and inflammasome component induced by inflammatory stimuli, followed by assembly of inflammasome to generate caspase-1 for cleavage of pro-IL-1ß. Here we show that tumor suppressor death-associated protein kinase (DAPK) deficiency impaired IL-1ß production in macrophages. Generation of tumor necrosis factor-α in macrophages, in contrast, was not affected by DAPK knockout. Two tiers of defects in IL-1ß generation were found in DAPK-deficient macrophages: decreased pro-IL-1ß induction by some stimuli and reduced caspase-1 activation by all inflammatory stimuli examined. With a normal NLRP3 induction in DAPK-deficient macrophages, the diminished caspase-1 generation is attributed to impaired inflammasome assembly. There is a direct binding of DAPK to NLRP3, suggesting an involvement of DAPK in inflammasome formation. We further illustrated that the formation of NLRP3 inflammasome in situ induced by inflammatory signals was impaired by DAPK deficiency. Taken together, our results identify DAPK as a molecule required for full production of IL-1ß and functional assembly of the NLRP3 inflammasome. In addition, DAPK knockout reduced uric acid crystal-triggered peritonitis, suggesting that DAPK may serve as a target in the treatment of IL-1ß-associated autoinflammatory diseases.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/deficiencia , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Adaptadoras de Señalización CARD , Proteínas Quinasas Dependientes de Calcio-Calmodulina/deficiencia , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Caspasa 1/genética , Caspasa 1/metabolismo , Línea Celular , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular , Células HEK293 , Humanos , Immunoblotting , Inflamación/metabolismo , Interleucina-1beta/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Proteína con Dominio Pirina 3 de la Familia NLR , Unión Proteica , Interferencia de ARN , Transfección , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
18.
EMBO Rep ; 12(9): 917-23, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21738225

RESUMEN

Death-associated protein kinase (DAPk) was recently suggested by sequence homology to be a member of the ROCO family of proteins. Here, we show that DAPk has a functional ROC (Ras of complex proteins) domain that mediates homo-oligomerization and GTP binding through a defined P-loop motif. Upon binding to GTP, the ROC domain negatively regulates the catalytic activity of DAPk and its cellular effects. Mechanistically, GTP binding enhances an inhibitory autophosphorylation at a distal site that suppresses kinase activity. This study presents a new mechanism of intramolecular signal transduction, by which GTP binding operates in cis to affect the catalytic activity of a distal domain in the protein.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Proteínas de Unión al GTP/metabolismo , Guanosina Trifosfato/metabolismo , Transducción de Señal , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Proteínas Quinasas Asociadas a Muerte Celular , Proteínas de Unión al GTP/genética , Células HEK293 , Humanos , Proteína Oncogénica p21(ras)/metabolismo , Fosforilación , Unión Proteica/genética , Multimerización de Proteína
19.
Nucleic Acids Res ; 39(Database issue): D793-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21097778

RESUMEN

The rapid accumulation of knowledge on biological signaling pathways and their regulatory mechanisms has highlighted the need for specific repositories that can store, organize and allow retrieval of pathway information in a way that will be useful for the research community. SPIKE (Signaling Pathways Integrated Knowledge Engine; http://www.cs.tau.ac.il/&~spike/) is a database for achieving this goal, containing highly curated interactions for particular human pathways, along with literature-referenced information on the nature of each interaction. To make database population and pathway comprehension straightforward, a simple yet informative data model is used, and pathways are laid out as maps that reflect the curator’s understanding and make the utilization of the pathways easy. The database currently focuses primarily on pathways describing DNA damage response, cell cycle, programmed cell death and hearing related pathways. Pathways are regularly updated, and additional pathways are gradually added. The complete database and the individual maps are freely exportable in several formats. The database is accompanied by a stand-alone software tool for analysis and dynamic visualization of pathways.


Asunto(s)
Bases de Datos Factuales , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Transducción de Señal , Apoptosis , Ciclo Celular , Daño del ADN , Humanos
20.
Autophagy ; 19(8): 2372-2385, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37184247

RESUMEN

Macroautophagy/autophagy is a catabolic process by which cytosolic content is engulfed, degraded and recycled. It has been implicated as a critical pathway in advanced stages of cancer, as it maintains tumor cell homeostasis and continuous growth by nourishing hypoxic or nutrient-starved tumors. Autophagy also supports alternative cellular trafficking pathways, providing a mechanism of non-canonical secretion of inflammatory cytokines. This opens a significant therapeutic opportunity for using autophagy inhibitors in cancer and acute inflammatory responses. Here we developed a high throughput compound screen to identify inhibitors of protein-protein interaction (PPI) in autophagy, based on the protein-fragment complementation assay (PCA). We chose to target the ATG12-ATG3 PPI, as this interaction is indispensable for autophagosome formation, and the analyzed structure of the interaction interface predicts that it may be amenable to inhibition by small molecules. We screened 41,161 compounds yielding 17 compounds that effectively inhibit the ATG12-ATG3 interaction in the PCA platform, and which were subsequently filtered by their ability to inhibit autophagosome formation in viable cells. We describe a lead compound (#189) that inhibited GFP-fused MAP1LC3B/LC3B (microtubule associated protein 1 light chain 3 beta) puncta formation in cells with IC50 value corresponding to 9.3 µM. This compound displayed a selective inhibitory effect on the growth of autophagy addicted tumor cells and inhibited secretion of IL1B/IL-1ß (interleukin 1 beta) by macrophage-like cells. Compound 189 has the potential to be developed into a therapeutic drug and its discovery documents the power of targeting PPIs for acquiring specific and selective compound inhibitors of autophagy.Abbreviations: ANOVA: analysis of variance; ATG: autophagy related; CQ: chloroquine; GFP: green fluorescent protein; GLuc: Gaussia Luciferase; HEK: human embryonic kidney; IL1B: interleukin 1 beta; LPS: lipopolysaccharide; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; PCA: protein-fragment complementation assay; PDAC: pancreatic ductal adenocarcinoma; PMA: phorbol 12-myristate 13-acetate; PPI: protein-protein interaction. VCL: vinculin.


Asunto(s)
Autofagia , Neoplasias Pancreáticas , Humanos , Interleucina-1beta/farmacología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Relacionadas con la Autofagia , Proteínas Fluorescentes Verdes/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Proteína 12 Relacionada con la Autofagia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA