Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Nature ; 628(8008): 540-544, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38600386

RESUMEN

The historic Barnett effect describes how an inertial body with otherwise zero net magnetic moment acquires spontaneous magnetization when mechanically spinning1,2. Breakthrough experiments have recently shown that an ultrashort laser pulse destroys the magnetization of an ordered ferromagnet within hundreds of femtoseconds3, with the spins losing angular momentum to circularly polarized optical phonons as part of the ultrafast Einstein-de Haas effect4,5. However, the prospect of using such high-frequency vibrations of the lattice to reciprocally switch magnetization in a nearby magnetic medium has not yet been experimentally explored. Here we show that the spontaneous magnetization gained temporarily by means of the ultrafast Barnett effect, through the resonant excitation of circularly polarized optical phonons in a paramagnetic substrate, can be used to permanently reverse the magnetic state of a heterostructure mounted atop the said substrate. With the handedness of the phonons steering the direction of magnetic switching, the ultrafast Barnett effect offers a selective and potentially universal method for exercising ultrafast non-local control over magnetic order.

2.
Nature ; 630(8016): 335-339, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811734

RESUMEN

Traditionally, magnetic solids are divided into two main classes-ferromagnets and antiferromagnets with parallel and antiparallel spin orders, respectively. Although normally the antiferromagnets have zero magnetization, in some of them an additional antisymmetric spin-spin interaction arises owing to a strong spin-orbit coupling and results in canting of the spins, thereby producing net magnetization. The canted antiferromagnets combine antiferromagnetic order with phenomena typical of ferromagnets and hold great potential for spintronics and magnonics1-5. In this way, they can be identified as closely related to the recently proposed new class of magnetic materials called altermagnets6-9. Altermagnets are predicted to have strong magneto-optical effects, terahertz-frequency spin dynamics and degeneracy lifting for chiral spin waves10 (that is, all of the effects present in the canted antiferromagnets11,12). Here, by utilizing these unique phenomena, we demonstrate a new functionality of canted spin order for magnonics and show that it facilitates mechanisms converting a magnon at the centre of the Brillouin zone into propagating magnons using nonlinear magnon-magnon interactions activated by an ultrafast laser pulse. Our experimental findings supported by theoretical analysis show that the mechanism is enabled by the spin canting.

3.
Nature ; 569(7756): 383-387, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31092937

RESUMEN

Future information technology demands ever-faster, low-loss quantum control. Intense light fields have facilitated milestones along this way, including the induction of novel states of matter1-3, ballistic acceleration of electrons4-7 and coherent flipping of the valley pseudospin8. These dynamics leave unique 'fingerprints', such as characteristic bandgaps or high-order harmonic radiation. The fastest and least dissipative way of switching the technologically most important quantum attribute-the spin-between two states separated by a potential barrier is to trigger an all-coherent precession. Experimental and theoretical studies with picosecond electric and magnetic fields have suggested this possibility9-11, yet observing the actual spin dynamics has remained out of reach. Here we show that terahertz electromagnetic pulses allow coherent steering of spins over a potential barrier, and we report the corresponding temporal and spectral fingerprints. This goal is achieved by coupling spins in antiferromagnetic TmFeO3 (thulium orthoferrite) with the locally enhanced terahertz electric field of custom-tailored antennas. Within their duration of one picosecond, the intense terahertz pulses abruptly change the magnetic anisotropy and trigger a large-amplitude ballistic spin motion. A characteristic phase flip, an asymmetric splitting of the collective spin resonance and a long-lived offset of the Faraday signal are hallmarks of coherent spin switching into adjacent potential minima, in agreement with numerical simulations. The switchable states can be selected by an external magnetic bias. The low dissipation and the antenna's subwavelength spatial definition could facilitate scalable spin devices operating at terahertz rates.

4.
Phys Rev Lett ; 131(9): 096701, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37721841

RESUMEN

Finding efficient and ultrafast ways to control antiferromagnets is believed to be instrumental in unlocking their potential for magnetic devices operating at THz frequencies. Still, it is challenged by the absence of net magnetization in the ground state. Here, we show that the magnetization emerging from a state of coherent spin precession in antiferromagnetic iron borate FeBO_{3} can be used to enable the nonlinear coupling of light to another, otherwise weakly susceptible, mode of spin precession. This nonlinear mechanism can facilitate conceptually new ways of controlling antiferromagnetism.

5.
Phys Rev Lett ; 131(2): 026902, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37505956

RESUMEN

The interaction of a single-cycle terahertz electric field with the topological insulator MnBi_{2}Te_{4} triggers strongly anharmonic lattice dynamics, promoting fully coherent energy transfer between the otherwise noninteracting Raman-active E_{g} and infrared (IR)-active E_{u} phononic modes. Two-dimensional terahertz spectroscopy combined with modeling based on the classical equations of motion and symmetry analysis reveals the multistage process underlying the excitation of the Raman-active E_{g} phonon. In this nonlinear combined photophononic process, the terahertz electric field first prepares a coherent IR-active E_{u} phononic state and subsequently interacts with this state to efficiently excite the E_{g} phonon.

6.
Nature ; 542(7639): 71-74, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28099412

RESUMEN

Discovering ways to control the magnetic state of media with the lowest possible production of heat and at the fastest possible speeds is important in the study of fundamental magnetism, with clear practical potential. In metals, it is possible to switch the magnetization between two stable states (and thus to record magnetic bits) using femtosecond circularly polarized laser pulses. However, the switching mechanisms in these materials are directly related to laser-induced heating close to the Curie temperature. Although several possible routes for achieving all-optical switching in magnetic dielectrics have been discussed, no recording has hitherto been demonstrated. Here we describe ultrafast all-optical photo-magnetic recording in transparent films of the dielectric cobalt-substituted garnet. A single linearly polarized femtosecond laser pulse resonantly pumps specific d-d transitions in the cobalt ions, breaking the degeneracy between metastable magnetic states. By changing the polarization of the laser pulse, we deterministically steer the net magnetization in the garnet, thus writing '0' and '1' magnetic bits at will. This mechanism outperforms existing alternatives in terms of the speed of the write-read magnetic recording event (less than 20 picoseconds) and the unprecedentedly low heat load (less than 6 joules per cubic centimetre).

7.
Nat Mater ; 20(5): 607-611, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33558717

RESUMEN

Resonant ultrafast excitation of infrared-active phonons is a powerful technique with which to control the electronic properties of materials that leads to remarkable phenomena such as the light-induced enhancement of superconductivity1,2, switching of ferroelectric polarization3,4 and ultrafast insulator-to-metal transitions5. Here, we show that light-driven phonons can be utilized to coherently manipulate macroscopic magnetic states. Intense mid-infrared electric field pulses tuned to resonance with a phonon mode of the archetypical antiferromagnet DyFeO3 induce ultrafast and long-living changes of the fundamental exchange interaction between rare-earth orbitals and transition metal spins. Non-thermal lattice control of the magnetic exchange, which defines the stability of the macroscopic magnetic state, allows us to perform picosecond coherent switching between competing antiferromagnetic and weakly ferromagnetic spin orders. Our discovery emphasizes the potential of resonant phonon excitation for the manipulation of ferroic order on ultrafast timescales6.

8.
Phys Rev Lett ; 127(3): 037203, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34328781

RESUMEN

THz magnetization dynamics of antiferromagnetically coupled spins in ferrimagnetic Tm_{3}Fe_{5}O_{12} is excited by a picosecond single-cycle pulse of a magnetic field and probed with the help of the magneto-optical Faraday effect. Data analysis combined with numerical modeling shows that the dynamics corresponds to the exchange mode excited by the Zeeman interaction of the THz magnetic field with the spins. We argue that THz-pump-IR-probe experiments on ferrimagnets offer a unique tool for quantitative studies of dynamics and mechanisms to control antiferromagnetically coupled spins.

9.
Phys Rev Lett ; 125(15): 157201, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33095611

RESUMEN

The microscopic origin of ultrafast modification of the ratio between the symmetric (J) and antisymmetric (D) exchange interaction in antiferromagnetic iron oxides is revealed, using femtosecond laser excitation as a pump and terahertz emission spectroscopy as a probe. By tuning the photon energy of the laser pump pulse we show that the effect of light on the D/J ratio in two archetypical iron oxides FeBO_{3} and ErFeO_{3} is maximized when the photon energy is in resonance with a spin and parity forbidden d-d transition between the crystal-field split states of Fe^{3+} ions. The experimental findings are supported by a multielectron model, which accounts for the resonant absorption of photons by Fe^{3+} ions. Our results reveal the importance of the parity and spin-change forbidden, and therefore often underestimated, d-d transitions in ultrafast optical control of magnetism.

10.
Phys Rev Lett ; 123(15): 157202, 2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31702317

RESUMEN

A nearly single cycle intense terahertz (THz) pulse with peak electric and magnetic fields of 0.5 MV/cm and 0.16 T, respectively, excites both modes of spin resonances in the weak antiferromagnet FeBO_{3}. The high frequency quasiantiferromagnetic mode is excited resonantly and its amplitude scales linearly with the strength of the THz magnetic field, whereas the low frequency quasiferromagnetic mode is excited via a nonlinear mechanism that scales quadratically with the strength of the THz electric field and can be regarded as a THz inverse Cotton-Mouton effect. THz optomagnetism is shown to be more energy efficient than similar effects reported previously for the near-infrared spectral range.

11.
Phys Rev Lett ; 122(2): 027202, 2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30720301

RESUMEN

A heat-assisted route for subnanosecond magnetic recording is discovered for the dielectric bismuth-substituted yttrium iron garnet, known for possessing small magnetic damping. The experiments and simulations reveal that the route involves nonlinear magnetization precession, triggered by a transient thermal modification of the growth-induced crystalline anisotropy in the presence of a fixed perpendicular magnetic field. The pathway is rendered robust by the damping becoming anomalously large during the switching process. Subnanosecond deterministic magnetization reversal was achieved within just one-half of a precessional period, and this mechanism should be possible to implement in any material with suitably engineered dissimilar thermal derivatives of magnetization and anisotropy.

12.
Phys Rev Lett ; 118(1): 017205, 2017 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-28106410

RESUMEN

We show that femtosecond laser pulse excitation of the orthoferrite ErFeO_{3} triggers pico- and subpicosecond dynamics of magnetic and electric dipoles associated with the low energy electronic states of the Er^{3+} ions. These dynamics are readily revealed by using polarization sensitive terahertz emission spectroscopy. It is shown that by changing the polarization of the femtosecond laser pulse one can excite either electric dipole-active or magnetic dipole-active transitions between the Kramers doublets of the ^{4}I_{15/2} ground state of the Er^{3+} (4f^{11}) ions. These observations serve as a proof of principle of polarization-selective control of both electric and magnetic degrees of freedom at terahertz frequencies, opening up new vistas for optical manipulation of magnetoelectric materials.

13.
Phys Rev Lett ; 118(11): 117203, 2017 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-28368648

RESUMEN

We show that applying magnetic fields up to 30 T has a dramatic effect on the ultrafast spin dynamics in ferrimagnetic GdFeCo. Upon increasing the field beyond a critical value, the dynamics induced by a femtosecond laser excitation strongly increases in amplitude and slows down significantly. Such a change in spin response is explained by different dynamics of the Gd and FeCo magnetic sublattices following a spin-flop phase transition from a collinear to a noncollinear spin state.

14.
Nature ; 472(7342): 205-8, 2011 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-21451521

RESUMEN

Ferromagnetic or antiferromagnetic spin ordering is governed by the exchange interaction, the strongest force in magnetism. Understanding spin dynamics in magnetic materials is an issue of crucial importance for progress in information processing and recording technology. Usually the dynamics are studied by observing the collective response of exchange-coupled spins, that is, spin resonances, after an external perturbation by a pulse of magnetic field, current or light. The periods of the corresponding resonances range from one nanosecond for ferromagnets down to one picosecond for antiferromagnets. However, virtually nothing is known about the behaviour of spins in a magnetic material after being excited on a timescale faster than that corresponding to the exchange interaction (10-100 fs), that is, in a non-adiabatic way. Here we use the element-specific technique X-ray magnetic circular dichroism to study spin reversal in GdFeCo that is optically excited on a timescale pertinent to the characteristic time of the exchange interaction between Gd and Fe spins. We unexpectedly find that the ultrafast spin reversal in this material, where spins are coupled antiferromagnetically, occurs by way of a transient ferromagnetic-like state. Following the optical excitation, the net magnetizations of the Gd and Fe sublattices rapidly collapse, switch their direction and rebuild their net magnetic moments at substantially different timescales; the net magnetic moment of the Gd sublattice is found to reverse within 1.5 picoseconds, which is substantially slower than the Fe reversal time of 300 femtoseconds. Consequently, a transient state characterized by a temporary parallel alignment of the net Gd and Fe moments emerges, despite their ground-state antiferromagnetic coupling. These surprising observations, supported by atomistic simulations, provide a concept for the possibility of manipulating magnetic order on the timescale of the exchange interaction.

15.
Phys Rev Lett ; 116(9): 097401, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26991201

RESUMEN

Excitation of the collinear compensated antiferromagnet DyFeO_{3} with a single 60 fs laser pulse triggers a phase transition across the Morin point into a noncollinear spin state with a net magnetization. Time-resolved imaging of the magnetization dynamics of this process reveals that the pulse first excites the spin oscillations upon damping of which the noncollinear spin state emerges. The sign of the photoinduced magnetization is defined by the relative orientation of the pump polarization and the direction of the antiferromagnetic vector in the initial collinear spin state.

16.
Opt Express ; 23(18): 23978-84, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26368488

RESUMEN

Imaging domain structure of antiferromagnetic DyFeO(3) reveals that intense laser excitation can control the temperature of the Morin transition from collinear to non-collinear spin state. Excitation of the antiferromagnet with femtosecond laser pulses with the central wavelength of 800 nm leads to a shift of the transition temperature over 1 K to higher values as if the light effectively cools the irradiated area down. It is suggested that the optical control of the Morin point can be a result of photo-ionization of Dy(3+) ions.

17.
Nat Mater ; 12(4): 293-8, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23503010

RESUMEN

Ultrafast laser techniques have revealed extraordinary spin dynamics in magnetic materials that equilibrium descriptions of magnetism cannot explain. Particularly important for future applications is understanding non-equilibrium spin dynamics following laser excitation on the nanoscale, yet the limited spatial resolution of optical laser techniques has impeded such nanoscale studies. Here we present ultrafast diffraction experiments with an X-ray laser that probes the nanoscale spin dynamics following optical laser excitation in the ferrimagnetic alloy GdFeCo, which exhibits macroscopic all-optical switching. Our study reveals that GdFeCo displays nanoscale chemical and magnetic inhomogeneities that affect the spin dynamics. In particular, we observe Gd spin reversal in Gd-rich nanoregions within the first picosecond driven by the non-local transfer of angular momentum from larger adjacent Fe-rich nanoregions. These results suggest that a magnetic material's microstructure can be engineered to control transient laser-excited spins, potentially allowing faster (~ 1 ps) spin reversal than in present technologies.

18.
Phys Rev Lett ; 112(14): 147403, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24766012

RESUMEN

Femtosecond laser pulses trigger in dielectric FeBO3 coherent oscillations of the magnetic anisotropy followed by spins. The oscillations are driven by optically excited lattice vibrations strongly coupled to the magnetic system. Unlike the spin resonances, this mode is characterized by a very small damping ratio and can be easily pushed into an anharmonic regime.

19.
Nat Commun ; 15(1): 4451, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789410

RESUMEN

Ultrafast excitation of matter can violate Curie's principle that the symmetry of the cause must be found in the symmetry of the effect. For instance, heating alone cannot result in a deterministic reversal of magnetization. However, if the heating is ultrafast, it facilitates toggle switching of magnetization between stable bit-states without any magnetic field. Here we show that the regime of ultrafast toggle switching can be also realized via a mechanism without relying on heat. Ultrafast laser excitation of iron-garnet with linearly polarized light modifies magnetic anisotropy and thus causes toggling magnetization between two stable bit states. This new regime of 'cold' toggle switching can be observed in ferrimagnets without a compensation point and over an exceptionally broad temperature range. The control of magnetic anisotropy required for the toggle switching exhibits reduced dissipation compared to laser-induced-heating mechanism, however the dissipation and the switching-time are shown to be competing parameters.

20.
Phys Rev Lett ; 110(10): 107205, 2013 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-23521292

RESUMEN

We demonstrate the feasibility of element-specific probing of ultrafast spin dynamics in the multisublattice magnet TbFe in the visible spectral range. In particular, we show that one can selectively study the dynamics of Tb and Fe sublattices choosing the wavelength of light below and above 610 nm, respectively. We observe that, despite their antiferromagnetic coupling in the ground state, the Tb and Fe spins temporarily align ferromagnetically after excitation with an intense 55-fs laser pulse, after which they relax to their initial states due to the strong anisotropy in Tb.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA