Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3207, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615031

RESUMEN

Knockout of the ORF8 protein has repeatedly spread through the global viral population during SARS-CoV-2 evolution. Here we use both regional and global pathogen sequencing to explore the selection pressures underlying its loss. In Washington State, we identified transmission clusters with ORF8 knockout throughout SARS-CoV-2 evolution, not just on novel, high fitness viral backbones. Indeed, ORF8 is truncated more frequently and knockouts circulate for longer than for any other gene. Using a global phylogeny, we find evidence of positive selection to explain this phenomenon: nonsense mutations resulting in shortened protein products occur more frequently and are associated with faster clade growth rates than synonymous mutations in ORF8. Loss of ORF8 is also associated with reduced clinical severity, highlighting the diverse clinical impacts of SARS-CoV-2 evolution.


Asunto(s)
COVID-19 , SARS-CoV-2 , Selección Genética , Humanos , Filogenia , SARS-CoV-2/genética , Proteínas Virales/genética , Selección Genética/genética
2.
Cell Host Microbe ; 31(11): 1898-1909.e3, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37883977

RESUMEN

Through antigenic evolution, viruses such as seasonal influenza evade recognition by neutralizing antibodies. This means that a person with antibodies well tuned to an initial infection will not be protected against the same virus years later and that vaccine-mediated protection will decay. To expand our understanding of which endemic human viruses evolve in this fashion, we assess adaptive evolution across the genome of 28 endemic viruses spanning a wide range of viral families and transmission modes. Surface proteins consistently show the highest rates of adaptation, and ten viruses in this panel are estimated to undergo antigenic evolution to selectively fix mutations that enable the escape of prior immunity. Thus, antibody evasion is not an uncommon evolutionary strategy among human viruses, and monitoring this evolution will inform future vaccine efforts. Additionally, by comparing overall amino acid substitution rates, we show that SARS-CoV-2 is accumulating protein-coding changes at substantially faster rates than endemic viruses.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Humanos , Anticuerpos Neutralizantes/genética , Mutación , SARS-CoV-2/genética , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza
3.
Nat Commun ; 13(1): 4186, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35859071

RESUMEN

As shown during the SARS-CoV-2 pandemic, phylogenetic and phylodynamic methods are essential tools to study the spread and evolution of pathogens. One of the central assumptions of these methods is that the shared history of pathogens isolated from different hosts can be described by a branching phylogenetic tree. Recombination breaks this assumption. This makes it problematic to apply phylogenetic methods to study recombining pathogens, including, for example, coronaviruses. Here, we introduce a Markov chain Monte Carlo approach that allows inference of recombination networks from genetic sequence data under a template switching model of recombination. Using this method, we first show that recombination is extremely common in the evolutionary history of SARS-like coronaviruses. We then show how recombination rates across the genome of the human seasonal coronaviruses 229E, OC43 and NL63 vary with rates of adaptation. This suggests that recombination could be beneficial to fitness of human seasonal coronaviruses. Additionally, this work sets the stage for Bayesian phylogenetic tracking of the spread and evolution of SARS-CoV-2 in the future, even as recombinant viruses become prevalent.


Asunto(s)
COVID-19 , Coronavirus Humano 229E , Teorema de Bayes , Humanos , Filogenia , Recombinación Genética , SARS-CoV-2/genética
4.
Cell Host Microbe ; 30(4): 545-555.e4, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35364015

RESUMEN

The SARS-CoV-2 pandemic has resulted in numerous virus variants, some of which have altered receptor-binding or antigenic phenotypes. Here, we quantify the degree to which adaptive evolution is driving the accumulation of mutations across the genome. We correlate clade growth with mutation accumulation, compare rates of nonsynonymous to synonymous divergence, assess temporal clustering of mutations, and evaluate the evolutionary success of individual mutations. We find that spike S1 is the focus of adaptive evolution but also identify positively selected mutations in other proteins (notably Nsp6) that are sculpting the evolutionary trajectory of SARS-CoV-2. Adaptive changes in S1 accumulated rapidly, resulting in a remarkably high ratio of nonsynonymous to synonymous divergence that is 2.5× greater than that observed in influenza hemagglutinin HA1 at the beginning of the 2009 H1N1 pandemic. These findings uncover a high degree of adaptation in S1 and suggest that SARS-CoV-2 might undergo antigenic drift.


Asunto(s)
SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , COVID-19/virología , Humanos , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
5.
bioRxiv ; 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33948594

RESUMEN

As shown during the SARS-CoV-2 pandemic, phylogenetic and phylodynamic methods are essential tools to study the spread and evolution of pathogens. One of the central assumptions of these methods is that the shared history of pathogens isolated from different hosts can be described by a branching phylogenetic tree. Recombination breaks this assumption. This makes it problematic to apply phylogenetic methods to study recombining pathogens, including, for example, coronaviruses. Here, we introduce a Markov chain Monte Carlo approach that allows inference of recombination networks from genetic sequence data under a template switching model of recombination. Using this method, we first show that recombination is extremely common in the evolutionary history of SARS-like coronaviruses. We then show how recombination rates across the genome of the human seasonal coronaviruses 229E, OC43 and NL63 vary with rates of adaptation. This suggests that recombination could be beneficial to fitness of human seasonal coronaviruses. Additionally, this work sets the stage for Bayesian phylogenetic tracking of the spread and evolution of SARS-CoV-2 in the future, even as recombinant viruses become prevalent.

6.
bioRxiv ; 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34545361

RESUMEN

Given the importance of variant SARS-CoV-2 viruses with altered receptor-binding or antigenic phenotypes, we sought to quantify the degree to which adaptive evolution is driving accumulation of mutations in the SARS-CoV-2 genome. Here we assessed adaptive evolution across genes in the SARS-CoV-2 genome by correlating clade growth with mutation accumulation as well as by comparing rates of nonsynonymous to synonymous divergence, clustering of mutations across the SARS-CoV-2 phylogeny and degree of convergent evolution of individual mutations. We find that spike S1 is the focus of adaptive evolution, but also identify positively-selected mutations in other genes that are sculpting the evolutionary trajectory of SARS-CoV-2. Adaptive changes in S1 accumulated rapidly, resulting in a remarkably high ratio of nonsynonymous to synonymous divergence that is 2.5X greater than that observed in HA1 at the beginning of the 2009 H1N1 pandemic.

7.
Elife ; 102021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33463525

RESUMEN

Seasonal coronaviruses (OC43, 229E, NL63, and HKU1) are endemic to the human population, regularly infecting and reinfecting humans while typically causing asymptomatic to mild respiratory infections. It is not known to what extent reinfection by these viruses is due to waning immune memory or antigenic drift of the viruses. Here we address the influence of antigenic drift on immune evasion of seasonal coronaviruses. We provide evidence that at least two of these viruses, OC43 and 229E, are undergoing adaptive evolution in regions of the viral spike protein that are exposed to human humoral immunity. This suggests that reinfection may be due, in part, to positively selected genetic changes in these viruses that enable them to escape recognition by the immune system. It is possible that, as with seasonal influenza, these adaptive changes in antigenic regions of the virus would necessitate continual reformulation of a vaccine made against them.


Asunto(s)
Adaptación Fisiológica/genética , Antígenos Virales/genética , Evolución Biológica , Coronavirus/metabolismo , Estaciones del Año , Simulación por Computador , Coronavirus/genética , Regulación Viral de la Expresión Génica , Humanos , Virus de la Influenza A/genética , Virus del Sarampión/genética , Filogenia
8.
Elife ; 72018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-30260314

RESUMEN

Germ granules are non-membranous ribonucleoprotein granules deemed the hubs for post-transcriptional gene regulation and functionally linked to germ cell fate across species. Little is known about the physical properties of germ granules and how these relate to germ cell function. Here we study two types of germ granules in the Drosophila embryo: cytoplasmic germ granules that instruct primordial germ cells (PGCs) formation and nuclear germ granules within early PGCs with unknown function. We show that cytoplasmic and nuclear germ granules are phase transitioned condensates nucleated by Oskar protein that display liquid as well as hydrogel-like properties. Focusing on nuclear granules, we find that Oskar drives their formation in heterologous cell systems. Multiple, independent Oskar protein domains synergize to promote granule phase separation. Deletion of Oskar's nuclear localization sequence specifically ablates nuclear granules in cell systems. In the embryo, nuclear germ granules promote germ cell divisions thereby increasing PGC number for the next generation.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Células Germinativas/crecimiento & desarrollo , Animales , División Celular/genética , Núcleo Celular/genética , Gránulos Citoplasmáticos/genética , Drosophila melanogaster/genética , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/metabolismo
10.
Cell Rep ; 11(1): 51-60, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25818303

RESUMEN

The mosquito Aedes aegypti is a potent vector of the chikungunya, yellow fever, and dengue viruses, responsible for hundreds of millions of infections and over 50,000 human deaths per year. Mutagenesis in Ae. aegypti has been established with TALENs, ZFNs, and homing endonucleases, which require the engineering of DNA-binding protein domains to provide genomic target sequence specificity. Here, we describe the use of the CRISPR-Cas9 system to generate site-specific mutations in Ae. aegypti. This system relies on RNA-DNA base-pairing to generate targeting specificity, resulting in efficient and flexible genome-editing reagents. We investigate the efficiency of injection mix compositions, demonstrate the ability of CRISPR-Cas9 to generate different types of mutations via disparate repair mechanisms, and report stable germline mutations in several genomic loci. This work offers a detailed exploration into the use of CRISPR-Cas9 in Ae. aegypti that should be applicable to non-model organisms previously out of reach of genetic modification.


Asunto(s)
Aedes/genética , Proteínas de Unión al ADN/genética , Ingeniería Genética , Genoma de los Insectos , Animales , Secuencia de Bases , Sistemas CRISPR-Cas , Vectores Genéticos , Mutagénesis , Mutación , Edición de ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA